exp - Maple Help

exp

The Exponential Function

Calling Sequence

 exp(x) ${ⅇ}^{x}$

Parameters

 x - expression

Description

 • The exponential function, exp(x), calculates the value of e to the power of x, where e is the base of the natural logarithm, 2.718281828... .
 • You can enter the command exp using either the 1-D or 2-D calling sequence. For example, exp(-1) is equivalent to ${ⅇ}^{-1}$. Note that the 2-D calling sequence must be entered by using the Expression palette, the Common Symbols palette, or command completion. To use command completion, type e, press Esc, and select Exponential 'e'.
 • E is no longer reserved in Maple.  exp(1) is used instead.

Examples

 > ${ⅇ}^{-1}$
 ${{ⅇ}}^{{-1}}$ (1)
 > $\mathrm{evalf}\left(\right)$
 ${0.3678794412}$ (2)
 > ${ⅇ}^{1.379}$
 ${3.970928713}$ (3)
 > $\frac{ⅆ}{ⅆx}{ⅇ}^{-2x}$
 ${-}{2}{}{{ⅇ}}^{{-}{2}{}{x}}$ (4)
 > $∫{ⅇ}^{-2x}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}ⅆx$
 ${-}\frac{{{ⅇ}}^{{-}{2}{}{x}}}{{2}}$ (5)

In 2-D math notation, it is important to use the Expression palette to enter the exponential function, because Maple does not recognize that the letter "e" is the exponential function.

 > $\mathrm{evalf}\left(ⅇ\right)$
 ${2.718281828}$ (6)
 > $\mathrm{evalf}\left(e\right)$
 ${e}$ (7)
 > ${ⅇ}^{I\mathrm{Pi}}+1$
 ${0}$ (8)
 > ${ⅇ}^{1.234+5.678I}$
 ${2.824884809}{-}{1.954188170}{}{I}$ (9)
 > $\mathrm{evalc}\left({ⅇ}^{x+Iy}\right)$
 ${{ⅇ}}^{{x}}{}{\mathrm{cos}}{}\left({y}\right){+}{I}{}{{ⅇ}}^{{x}}{}{\mathrm{sin}}{}\left({y}\right)$ (10)
 > $\mathrm{solve}\left({ⅇ}^{4y}=3,y\right)$
 $\frac{{\mathrm{ln}}{}\left({3}\right)}{{4}}$ (11)