Hypergeometric[DefiniteSumAsymptotic] - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Calculus : Limits : Hypergeometric[DefiniteSumAsymptotic]

SumTools[Hypergeometric]

  

DefiniteSumAsymptotic

  

asymptotic expansion of a definite hypergeometric sum

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

DefiniteSumAsymptotic(T, n, k, l..u, f)

Parameters

T

-

algebraic expression representing a hypergeometric term of both n and k

n

-

name

k

-

name

l..u

-

range for k

f

-

(optional) unevaluated name

Description

• 

For a hypergeometric term T of n and k over the real number field, the DefiniteSumAsymptotic(T,n,k,l..u) command computes the asymptotic expansion of the definite sum Sn=k=luT with respect to the variable n (as n approaches ), where l=rn+s and u=tn+v for some real numbers r, s, t, v.

• 

The routine returns an error if  T does not satisfy the following conditions for all large enough n and for all k in the range l..u:

1. 

T is defined;

2. 

T has constant sign.

• 

In trivial cases (for example, when T is a rational function in k and polynomial in n) the procedure returns an asymptotic expansion of Sn with a truncation order specified by the global variable Order. Otherwise, if possible, the procedure returns the main part of an asymptotic expansion of the form:

SgnnC0n+C1na1+...+CmnamnD ⅇQn1b1+O1nc

  

or

SgnnC0n+C1na1+...+CmnamnD ⅇQn1b1+O1

  

or

SgnnC0n+C1na1+...+CmnamnD ⅇQn1b1+On

  

where

– 

Sgn is 1 or -1,

– 

C0, C1, ..., Cm, D  are constants,

– 

a1, ..., am are positive rational numbers 1,

– 

c is a positive rational number,

– 

b is a positive integer, and

– 

Q is a polynomial of degree b.

• 

The procedure can compute the asymptotics of most frequently used binomial sums. In case it cannot compute one, it returns FAIL.

• 

If the optional argument f is specified, the input is not trivial, and the main part of the asymptotic expansion was computed to be O1nc, then f will be assigned an auxiliary procedure. This procedure computes approximate values for the next coefficients in the asymptotic expansion, by treating an experimental sample for large n statistically, using the least-squares method.

• 

The procedure assigned to f returns a sequence of two elements. The first element is the asymptotic expansion, which contains placeholder names _s1, _s2, ... The second element is a list of equations _s1=s1, _s2=s2, ... where s1, s2, ... are floating-point numbers approximating the values of _s1, _s2, ...

• 

The typical calling sequence of the auxiliary procedure is fn0,n1,h,q, where

1. 

n0 is a lower bound for the samples w.r.t. n;

2. 

n1 is an upper bound for the samples w.r.t. n;

3. 

h is the step size for the samples w.r.t. n;

4. 

q is the desired number of coefficients _si.

  

These parameters should satisfy the following constraints:

– 

100n0,

– 

h is a positive integer,

– 

n0+10hn1, and

– 

3q.

  

The recommended values for the parameters are 1000n0, 2n0n1,  h=10; q=3 if c=1 and q=6 if c<1. By default, calling f without arguments is equivalent to f1000&comma;2000&comma;10&comma;3.

• 

If there is a conjecture for an exact value s1 of _s1, then fn0&comma;n1&comma;h&comma;q&comma;s1 computes approximate values for the subsequent coefficients. Similarly, it is possible to call fn0&comma;n1&comma;h&comma;q&comma;s1&comma;s2, fn0&comma;n1&comma;h&comma;q&comma;s1&comma;s2&comma;s3, etc.

• 

Note that the value of Digits controls only the working precision, i.e., the number of digits that f uses when it calculates the experimental sample and runs the least-squares method. The accuracy of s1, s2, ... can be increased by calling f with higher values of n0, n1, and Digits. Generally, the values si are less accurate the higher the index i is.

Examples

withSumToolsHypergeometric&colon;

DefiniteSumAsymptoticbinomialn&comma;k&comma;n&comma;k&comma;0..n

2n1+O1n

(1)

DefiniteSumAsymptoticbinomial2n&comma;nkk&comma;n&comma;k&comma;0..n

On2n2

(2)

Tbinomial2n&comma;2k3&colon;

DefiniteSumAsymptoticT&comma;n&comma;k&comma;0..n&comma;f

64n31+O1n6πn

(3)

resf

res64n31+_s1n+_s122+_s2n2+_s3+_s1_s2+16_s13n3+O1n46πn,_s1=−0.1666666667&comma;_s2=−0.004629630518&comma;_s3=0.001544419223

(4)

convertres21&comma;rational&comma;9

_s1=16

(5)

Digits20&colon;

resf1000&comma;2000&comma;10&comma;3&comma;16

res64n3116n+172+_s1n2+_s2_s1611296n3+_s316_s2+172_s1+12_s12+131104n4+O1n56πn,_s1=−0.0046296296295318913642&comma;_s2=0.0015432094765491628609&comma;_s3=0.00053636958191821916288

(6)

convertres21&comma;rational&comma;10

_s1=1216

(7)

SumT&comma;k=0..n=evalevalres1&comma;&comma;res2

k=0n2n2k3=64n3116n+1108n2+0.0015432094765491628609n3+0.00025773453198581410444n4+O1n56πn

(8)

References

  

Ryabenko, A.A., and Skorokhodov, S.L. "Asymptotics of Sums of Hypergeometric Terms." Programming and Computer Software. Vol. 31, (2005): 65-72.

See Also

asympt

eulermac

LinearAlgebra[LeastSquares]

SumTools[Hypergeometric]

SumTools[Hypergeometric][DefiniteSum]