AutoCorrelation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics

  

AutoCorrelation

  

compute sample autocorrelations of a real Vector

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

AutoCorrelation(X)

AutoCorrelation(X, lags)

Parameters

X

-

discrete univariate real time series given as a Vector, list, DataSeries object, Matrix with one column, DataFrame with one column, or TimeSeries object with one dataset.

lags

-

(optional) maximal lag to return, or a range of lags to return. By default all possible lags are returned.

Options

• 

scaling

  

One of biased, unbiased, or none.  Default is none. scaling=biased computes Rk=Ckn. scaling=unbiased scales each Ck by 1nk.

• 

raw

  

If this option is given, the output is not normalized so that the first entry is 1 when scaling=unbiased or scaling=none.

Description

• 

For a discrete time series X, the AutoCorrelation command computes the autocorrelations Rk=CkC0 where Ck=t=1nkXtμXt+kμ for k=0..n1 and  μ is the mean of X.

• 

For efficiency, all of the lags are computed at once using a numerical discrete Fourier transform.  Therefore all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.

• 

Note: AutoCorrelation makes use of DiscreteTransforms[FourierTransform] and thus will work strictly in hardware precision, that is, its accuracy is independent of the setting of Digits.

• 

For more time series related commands, see the TimeSeriesAnalysis package.

Examples

withStatistics:

AutoCorrelation1,2,1,2,1,2,1,2

1.−0.8750000000090560.750000000020185−0.6250000000148730.500000000015000−0.3750000000151270.250000000009815−0.125000000020944

(1)

AutoCorrelation1,2,1,2,1,2,1,2,2

1.−0.8750000000090560.750000000020185

(2)

AutoCorrelation1,2,1,2,1,2,1,2,0..2

1.−0.8750000000090560.750000000020185

(3)

AutoCorrelation1,2,1,2,1,2,1,2,1..2

−0.8750000000090560.750000000020185

(4)

AutoCorrelation1,2,1,2,1,2,1,2,2,scaling=unbiased

1.−1.000000000010351.00000000002691

(5)

AutoCorrelation1,2,1,2,1,2,1,2,2,scaling=biased

0.0624999999981250−0.05468749999892540.0468749999998553

(6)

AutoCorrelation1,2,1,2,1,2,1,2,2,raw

0.499999999985000−0.4374999999914030.374999999998843

(7)

tTimeSeriesAnalysis:-TimeSeries1,2,1,2,1,2,1,2,8,7,6,5,4,3,2,1,header=Sales,Profits,enddate=2012-01-01,frequency=monthly

tTime seriesSales, Profits8 rows of data:2011-06-01 - 2012-01-01

(8)

AutoCorrelationt..,Sales,2

1.−0.8750000000090560.750000000020185

(9)

Autocorrelation can be used to create correlograms which are useful for detecting periodicity in signals.

Rseq13evalfsin17.2icos13.8i+1.17+rand0..123,i=1..500:

LineChartR,size=0.5,golden

AutoCorrelationPlotR,lags=100

Periodicity in a time series can be observed with Autocorrelation.

withTimeSeriesAnalysis:

DataImportdatasets/sunspots.csv,base=datadir,output=Matrix

tsDataTimeSeriesData265..310,2

tsDataTime seriesdata set46 rows of data:1978 - 2023

(10)

SAutoCorrelationtsData

AutoCorrelationPlotGetDatatsData

Compatibility

• 

The Statistics[AutoCorrelation] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

• 

The Statistics[AutoCorrelation] command was updated in Maple 2015.

• 

The X parameter was updated in Maple 2015.

See Also

ColumnGraph

Statistics[Correlogram]

Statistics[CrossCorrelation]

TimeSeriesAnalysis