Zeilberger - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

Zeilberger

  

perform Zeilberger's algorithm (q-difference case)

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Zeilberger(T, n, k, q, Qn)

Parameters

T

-

q-hypergeometric term in qn and qk

n

-

name

k

-

name

q

-

name

Qn

-

name; denote the q-shift operator with respect to qn

Description

• 

For a specified q-hypergeometric term Tqn,qk of qn and qk, the Zeilberger(T, n, k, q, Qn) calling sequence constructs for Tqn,qk a Z-pair L,G that consists of a linear q-difference operator with coefficients that are polynomials of N=qn

L=avqnQnv+...+a1qnQn+a0qn

  

and a q-hypergeometric term Gqn,qk of qn and qk such that

LoTqn,qk=Gqn,qk+1Gqn,qk

• 

Qn is the q-shift operator with respect to qn, defined by QnFqn,qk=Fqn+1,qk.

• 

By assigning values to the global variables _MINORDER and _MAXORDER, the algorithm is restricted to finding a Z-pair L,G for Tqn,qk such that the order of L is between _MINORDER and _MAXORDER (the default value of _MAXORDER is 6).

• 

The output from the Zeilberger command is a list of two elements L,G representing the computed Z-pair L,G.

Examples

withQDifferenceEquations:

Tqn+kQBinomialn,k,q

Tqn+kQBinomialn,k,q

(1)

ZpairZeilbergerT,n,k,q,Qn:

Zpair1

Qn2+q2qQnqnq4+q3

(2)

Zpair2

qnq4qqn11+qkqkqn+kQBinomialn,k,qqqn+qkqnq2+qk

(3)

T2qk2QPochhammerq,q,kQPochhammerq,q,nk

T2qk2QPochhammerq,q,kQPochhammerq,q,nk

(4)

ZpairZeilbergerT,n,k,q,Qn:

Zpair1

qnq2+1Qn2+qn2q3+qnq2q1Qn+q

(5)

Zpair2

2qk2qn2q41+qkQPochhammerq,q,kQPochhammerq,q,nkqqn+qkqnq2+qk

(6)

References

  

Petkovsek, M.; Wilf, H.; and Zeilberger, D. A=B. Wellesley, Massachusetts: A K Peters, Ltd., 1996.

See Also

SumTools[Hypergeometric][Zeilberger]