QRationalCanonicalForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

QRationalCanonicalForm

  

construct four q-rational canonical forms of a rational function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

QRationalCanonicalForm[1](F, q, n)

QRationalCanonicalForm[2](F, q, n)

QRationalCanonicalForm[3](F, q, n)

QRationalCanonicalForm[4](F, q, n)

Parameters

F

-

rational function of n

q

-

name used as the parameter q, usually q

n

-

variable

Description

• 

Let F be a rational function of n over a field K of characteristic 0, q is a nonzero element of K which is not a root of unity. The QRationalCanonicalForm[i](F,q,n) command constructs the ith rational canonical form for F, i=1,2,3,4.

  

If QRationalCanonicalForm is called without an index, the first q-rational canonical form is constructed.

• 

The output is a sequence of 5 elements z,r,s,u,v, called qRNFF, where z is an element of K, and r,s,u,v are monic polynomials over K such that:

1. 

F=zrsQuvuv, gcdu,v=1.

2. 

gcdr,Qks for all integers k.

3. 

u00, v00.

4. 

gcdr,Q·Ev=1, gcds,Qu·v=1.

  

Note: Q is the automorphism of K(n) defined by QFn=Fqn.

• 

The five-tuple z,r,s,u,v that satisfies the four conditions is a strict q-rational normal form for F. The rational function zrs and uv are called the kernel and the shell of the qRNFF, respectively.

• 

Let φ=z,r,s,u,v be any qRNF of a rational function F. Then the degrees of the polynomials r and s are unique, and have minimal possible values in the sense that if Fn=pnQGnqnGn where p, q are polynomials in n, and G is a rational function of n, then degreerdegreep and degreesdegreeq.

• 

Additionally, if i=1 then degreev is minimal; if i=2 then degreeu is minimal; if i=3 then degreeu+degreev is minimal, and under this condition, degreev is minimal; if i=4 then degreeu+degreev is minimal, and under this condition, degreeu is minimal.

Examples

withQDifferenceEquations:

νn+q2q11n+1n+q5q3n+q4q2q3n+q21q12n+q21:

den+q5n+q42q11q4n+1n+q21q2n+q21:

Fνde

Fq2+nn+1q5q3+nq4q2+nq3n+q21q12n+q21q5+nq4+n2q4n+1q2+n1q2n+q21

(1)

z1,r1,s1,u1,v1QRationalCanonicalForm1F,q,n

z1,r1,s1,u1,v11q10,q5q3+nq4q2+n,q5+nn+1q4,n+q21q22q3+n2q4+n2q+nq2+nn+q21q11n+q21q10n+q21q9n+q21q8n+q21q7n+q21q6n+q21q5n+q21q4n+q21q3n+q21qq2+n1,1

(2)

z2,r2,s2,u2,v2QRationalCanonicalForm2F,q,n

z2,r2,s2,u2,v2q18,n+q21q3n+q21q12,q4+nq5+n,q3+nq4+n,q3+nq2q4q2+n2n+1q3n+1q2n+1qn+1n+q21qq2+n1q5q3+n

(3)

z3,r3,s3,u3,v3QRationalCanonicalForm3F,q,n

z3,r3,s3,u3,v3q4,q5q3+nn+q21q12,q5+nn+1q4,q3+n2q4+n2q+nq2+nn+q21q2,q3+nqq4q2+n

(4)

z4,r4,s4,u4,v4QRationalCanonicalForm4F,q,n

z4,r4,s4,u4,v4q12,q5q3+nn+q21q12,q4+nq5+n,q3+nq4+nn+q21q2,n+1q3n+1q2n+1qn+1q3+nqq4q2+n

(5)

Check the result from QRationalCanonicalForm[2].

Condition 1 is satisfied.

normalFz2r2s2subsn=qn,u2v2u2v2,gcdexu2,v2,n

0,1

(6)

Condition 2 is satisfied.

QDispersionr2,s2,q,n,QDispersions2,r2,q,n

FAIL,FAIL

(7)

Condition 3 is satisfied.

evalu2,n=00,normalevalv2,n=00

q70,q2q2170

(8)

Condition 4 is satisfied.

gcdexr2,u2subsn=qn,v2,n,gcdexs2,subsn=qn,u2v2,n

1,1

(9)

Degrees of the kernel:

degreer1,n,degreer2,n,degreer3,n,degreer4,n

2,2,2,2

(10)

degrees1,n,degrees2,n,degrees3,n,degrees4,n

2,2,2,2

(11)

The degree of v1 is minimal:

degreev1,n,degreev2,n,degreev3,n,degreev4,n

0,11,2,6

(12)

The degree of u2 is minimal:

degreeu1,n,degreeu2,n,degreeu3,n,degreeu4,n

19,2,7,3

(13)

For i=3,4, the degree of the shell is minimal:

degreeu1,n+degreev1,n,degreeu2,n+degreev2,n,degreeu3,n+degreev3,n,degreeu4,n+degreev4,n

19,13,9,9

(14)

References

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Efficient Representations of (q-)Hypergeometric Terms and the Assignment Problem." Submitted.

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.

See Also

QDifferenceEquations[QDispersion]

QDifferenceEquations[QEfficientRepresentation]

QDifferenceEquations[QMultiplicativeDecomposition]

QDifferenceEquations[QPolynomialNormalForm]