QPolynomialNormalForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

QPolynomialNormalForm

  

construct the q-polynomial normal form of a rational function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

QPolynomialNormalForm(F, q, n)

Parameters

F

-

rational function of n

q

-

name used as the parameter q, usually q

n

-

variable

Description

• 

Let F be a rational function of n over a field K of characteristic 0, q is a nonzero element of K which is not a root of unity. The QPolynomialNormalForm(F,q,n) command constructs the q-polynomial normal form for F.

• 

The output is a sequence of 4 elements z,a,b,c where z is an element of K, and a,b,c are monic polynomials over K such that: F=zaQcbc.  gcda,Qkb=1for allnonnegative integersk. c00. gcda,c=1,gcdb,Qc=1.

  

Note: Q is the automorphism of K(n) defined by {Q(F(n)) = F(q*n)}.

Examples

withQDifferenceEquations:

Fn1q3n1qn1q4n1

Fn1q3n1qn1q4n1

(1)

z,a,b,cQPolynomialNormalFormF,q,n

z,a,b,c1q4,n1,n1q4,n1q2n1q

(2)

Check the results.

Condition 1 is satisfied.

normalFzabsubsn=qn,cc

0

(3)

Condition 2 is satisfied.

QDispersionb,a,q,n

FAIL

(4)

Condition 3 is satisfied.

evalc,n=00

1q30

(5)

Condition 4 is satisfied.

gcdexa,c,n,gcdexb,subsn=qn,c,n

1,1

(6)

References

  

Abramov, S.A., and Petkovsek, M. "Finding all q-hypergeometric solutions of q-difference equations." Proc. FPSAC '95, Univ.de Marne-la-Vall'ee, Noisy-le-Grand, pp. 1-10. 1995.

  

Koornwinder, T.H. "On Zeilberger's algorithm and its q-analogue: a rigorous description." J. Comput. Appl. Math. Vol. 48. (1993): 91-111.

See Also

QDifferenceEquations[QDispersion]

QDifferenceEquations[QRationalCanonicalForm]