PartiallyOrderedSets/GreatestLowerBound - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : PartiallyOrderedSets/GreatestLowerBound

PartiallyOrderedSets

  

GreatestLowerBound

  

returns, if it exists, the greatest lower bound of a subset of the underlying set of a poset

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

GreatestLowerBound(P,E1,E2)

GreatestLowerBound(P,L)

GreatestLowerBound(P,E1,E2,opts)

GreatestLowerBound(P,L,opts)

Parameters

P

-

PartiallyOrderedSet

E1

-

element of the PartiallyOrderedSet P

E2

-

element of the PartiallyOrderedSet P

L

-

a set of elements of the PartiallyOrderedSet P

opts

-

(optional) either or both options of the form nosharedlowerbounds = s and multiplesharedlowerbounds = s where s is a non-integer expression

Description

• 

The command GreatestLowerBound(P,E1,E2) returns the greatest lower bound of the pair consisting of the elements E1 and E2 in the poset P, if this greatest lower bound exists, otherwise NULL is returned.

• 

The command GreatestLowerBound(P,L) returns the greatest lower bound of the subset L of the underlying set of P, if this greatest lower bound exists, otherwise NULL is returned.

• 

If nosharedlowerbounds = s  (resp.  multiplesharedlowerbounds = s) is provided, and if no greatest lower bound exists because no shared lower bounds exist (resp. because multiple shared lower bounds exist) then s is returned.

Remarks

• 

GreatestLowerBound will generate and store the transitive closure of P.

Terminology

• 

A partially ordered set, or poset for short, is a pair (P, <=) where P is a set and <= is a partial order on P.

• 

From now on, we fix a poset (P, <=).

• 

Let S be a subset of P and a be an element of S. We say that a is a greatest element (resp. least element) of S if for every element b  of S we have b  <= a (resp. a <= b). Observe that if S has a greatest element (resp. least element) then it is unique.

• 

We say that a is an upper bound (resp. lower bound) of S if if for every element b  of S we have b  <= a (resp. a <= b). Observe that a need not be  in S in order to be an upper bound (resp. lower bound) of S.

• 

We say that a is the infimum of S, or the greatest lower bound of S, if a  is the greatest element among all lower bounds of S.

• 

We say that a is the supremum of S, or the lest upper bound of S, if a  is the least element among all upper bounds of S.

Examples

withPartiallyOrderedSets&colon;

leq`<=`&colon;

Create a poset from a set and a non-strict partial order

S1&comma;2&comma;3&comma;4&comma;5&colon;poset1PartiallyOrderedSetS&comma;leq

poset1< a poset with 5 elements >

(1)

Display this poset

DrawGraphposet1

Compute a greatest lower bound of two elements

GreatestLowerBoundposet1&comma;3&comma;4

3

(2)

Compute a greatest lower bound  of a subset

GreatestLowerBoundposet1&comma;3&comma;4

3

(3)

Compute a greatest lower bound of a subset

GreatestLowerBoundposet1&comma;3&comma;4&comma;5

3

(4)

Create a poset from a set and a non-strict partial order

divisibilityx&comma;yiremy&comma;x=0&colon;T3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;9&colon;

poset2PartiallyOrderedSetT&comma;divisibility

poset2< a poset with 7 elements >

(5)

Display this poset

DrawGraphposet2

Compute a greatest lower bound of two elements, if it exists

GreatestLowerBoundposet2&comma;5&comma;7

Compute a greatest lower bound of two elements, if it exists, and specifiy a resulting message, if it does not

GreatestLowerBoundposet2&comma;5&comma;7&comma;nosharedlowerbounds=no shared lower bounds

no shared lower bounds

(6)

Compute a greatest lower bound of a subset

GreatestLowerBoundposet2&comma;6&comma;9

3

(7)

References

  

Richard P. Stanley: Enumerative Combinatorics 1. 1997, Cambridge Studies in Advanced Mathematics. Vol. 49. Cambridge University Press.

Compatibility

• 

The PartiallyOrderedSets[GreatestLowerBound] command was introduced in Maple 2025.

• 

For more information on Maple 2025 changes, see Updates in Maple 2025.

See Also

PartiallyOrderedSets[GreatestElement]

PartiallyOrderedSets[LeastElement]

PartiallyOrderedSets[LeastUpperBound]

PartiallyOrderedSets[MaximalElements]

PartiallyOrderedSets[MinimalElements]

PartiallyOrderedSets[PartiallyOrderedSet]