AreCommuting - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


AreCommuting

check if one LAVF commutes with another

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

AreCommuting(L, M)

AreCommuting(L, M, N)

Parameters

L, M, N

-

LAVF objects.

Description

• 

Let L, M, N be LAVF objects on the same space with same local coordinates. Then AreCommuting(L, M) checks if L commutes with M, i.e. if L,M=0.

• 

Similarly, the three arguments call AreCommuting(L, M, N) checks if L commutes with M mod N, i.e. if L,M is in N.

• 

This method is symmetric in the first two input arguments, that is, AreCommuting(L,M, N) is same as AreCommuting(M,L,N).

• 

Some Lie algebraic methods (IsLieAlgebra, IsAbelian, and IsIdeal) are front-ends to AreCommuting.

• 

This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y:

VVectorFieldξx,yDx+ηx,yDy,space=x,y

Vξⅆⅆx+ηⅆⅆy

(1)

E2LHPDEdiffξx,y,y,y=0,diffηx,y,x=diffξx,y,y,diffηx,y,y=0,diffξx,y,x=0,indep=x,y,dep=ξ,η

E2ξy,y=0,ηx=ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η

(2)

Construct a LAVF for E(2).

LLAVFV,E2

Lξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0

(3)

We can check if L is closed under commutator ...

AreCommutingL,L,L

true

(4)

or by using a more direct call.

IsLieAlgebraL

true

(5)

We can also check if L is abelian...

AreCommutingL,L

false

(6)

or by using a more direct call.

IsAbelianL

false

(7)

As we know the centre of L must be abelian,

AreCommutingCentreL,CentreL

true

(8)

Compatibility

• 

The AreCommuting command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]

LieAlgebrasOfVectorFields[LAVF]

IsLieAlgebra

IsAbelian

IsIdeal

 


Download Help Document