LeftCoset - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

LeftCoset

  

construct the left coset of a subgroup

  

RightCoset

  

construct the right coset of a subgroup

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

LeftCoset( g, H )

RightCoset( H, g )

Parameters

g

-

an element of some group containing H

H

-

a subgroup of a permutation group

Description

• 

Let H be a subgroup of a group G, and let g be a member of G. The left coset gH is defined to be the subset gh:hH of G. Similarly, the right coset Hg is the subset hg:hH of G.

• 

The LeftCoset( g, H ) command returns a data structure representing the left coset gH of a subgroup H of a permutation group G. The RightCoset( H, g ) command returns a data structure representing the right coset Hg of a subgroup H of a permutation group G.

• 

The data structures representing (left or right) cosets respond to the following methods.

Representative( c )

returns the representative of the coset c

numelems( c )

returns the number of members of the coset c

member( x, c ) or x in c

returns true if x belongs to the coset c

Elements( c )

returns the elements of the coset c, as a set

Subgroup( c )

returns the subgroup of the coset c

Examples

withGroupTheory:

GAlt4

GA4

(1)

HSubgroupPerm1,2,3,4,G

H1,23,4

(2)

CRightCosetH,Perm1,2,3

C1,23,4·1,2,3

(3)

GroupOrderH

2

(4)

numelemsC

2

(5)

ElementsC

1,3,4,1,2,3

(6)

RepresentativeC

1,2,3

(7)

evalbPerm1,3,2inC

false

(8)

The symmetric group on 3 letters as a Cayley table group.

M1|2|3|4|5|6,2|1|6|5|4|3,3|5|1|6|2|4,4|6|5|1|3|2,5|3|4|2|6|1,6|4|2|3|1|5

M123456216543351624465132534261642315

(9)

GCayleyTableGroupM

G < a Cayley table group with 6 elements >

(10)

2 is an involution.

HSubgroup2&comma;G

H < a Cayley table group with 1 generator >

(11)

RCRightCosetH&comma;3

RC < a Cayley table group with 1 generator > ·3

(12)

numelemsH=numelemsRC

2=2

(13)

ElementsRC

3&comma;6

(14)

LCLeftCoset3&comma;H

LC3· < a Cayley table group with 2 elements >

(15)

numelemsH=numelemsLC

2=2

(16)

ElementsLC

3&comma;5

(17)

Compatibility

• 

The GroupTheory[LeftCoset] and GroupTheory[RightCoset] commands were introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[Cosets]