Gcdex - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Gcdex

inert gcdex function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Gcdex(a, b, x, 's', 't')

Parameters

a, b

-

multivariate polynomials

x

-

main variable

s, t

-

(optional) unevaluated names

Description

• 

The Gcdex function is a placeholder for the extended Euclidean algorithm applied to a and b which are polynomials in x over a field.  Gcdex computes g, the greatest common divisor of a and b, which is a monic polynomial in x.  Additionally s and t are (if present) assigned polynomials in x such that  as+bt=g  with degrees&comma;x<degreeb&comma;x and degreet&comma;x<degreea&comma;x. Gcdex is used in conjunction with either mod or evala as described below, both of which define the coefficient domain.

• 

The call Gcdex(a, b, x, 's', 't') mod p performs the computation modulo p a prime integer. The multivariate polynomials a and b must have rational coefficients or coefficients in a finite field specified by RootOfs.

• 

The call evala(Gcdex(a, b, x, 's', 't')) does likewise. The multivariate polynomials a and b must have algebraic number (or function) coefficients specified by RootOfs.

Examples

Gcdexx2+x+1&comma;x2x+1&comma;x&comma;s&comma;tmod11

1

(1)

s,t

5x+6,6x+6

(2)

aliassqrt2=RootOfx22&colon;

evalaGcdexx22&comma;x2sqrt2x&comma;x&comma;s&comma;t

sqrt2+x

(3)

s,t

sqrt22,sqrt22

(4)

See Also

evala

Gcd

gcdex

mod

RootOf