Drift - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Finance

  

Drift

  

compute the drift component of an Ito process

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

Drift(X)

Drift(f, mu, sigma, X, t)

Parameters

X

-

stochastic process, expression involving stochastic variables

f

-

algebraic expression involving stochastic variables

mu

-

algebraic expression, drift term of the original process

sigma

-

algebraic expression, diffusion term of the original process

X

-

name, stochastic variable

t

-

name, time variable

Description

• 

The Drift(X) calling sequence computes the drift term of an Ito process X. That is, given a process Xt governed by the stochastic differential equation (SDE)

dXt=μXt,tdt+σXt,tdWt

the Drift command will return muXt,t.

• 

The parameter X can be either a stochastic process or an expression involving stochastic variables. In the first case a Maple procedure is applied for computing the drift term. This procedure will accept two parameters: the value of the state variable and the time, and return the corresponding value of the drift. In the second case, Ito's lemma will be applied to calculate the drift term of X. Note that the Drift command will perform formal computations; the validity of these computations for a given function f will not be verified.

Examples

withFinance:

The Drift command knows how to compute the drift for all supported Ito-type processes.

XOrnsteinUhlenbeckProcess0,θ,κ,σ

X_X0

(1)

DriftX

x,tκθx

(2)

DriftXt

κθ_X0t

(3)

You can also use expressions involving stochastic variables.

WWienerProcess

W_W

(4)

Driftat+bWt

a

(5)

Xtexpat+bWt

Xtⅇat+bWt

(6)

simplifyDriftXtXt

a+b22

(7)

UWienerProcess

U_W0

(8)

Ytexpat+bWt+cUt

Ytⅇat+bWt+cUt

(9)

simplifyDriftYtYt

a+b22+c22

(10)

DriftXt,Yt

aⅇat+b_Wt+b2ⅇat+b_Wt2aⅇat+b_Wt+c_W0t+b2ⅇat+b_Wt+c_W0t2+c2ⅇat+b_Wt+c_W0t2

(11)

The following example deals with two correlated one-dimensional Wiener processes.

Σ1.0|0.5,0.5|1.0

Σ1.00.50.51.0

(12)

VWienerProcessΣ

V_W1

(13)

Ztexpat+bVt1+cVt2

Ztⅇat+bVt1+cVt2

(14)

simplifyDriftZtZt

a+0.625000000000000b2+cb+0.625000000000000c2

(15)

References

  

Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.

  

Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.

  

Kloeden, P., and Platen, E., Numerical Solution of Stochastic Differential Equations, New York: Springer-Verlag, 1999.

Compatibility

• 

The Finance[Drift] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

Finance[BrownianMotion]

Finance[CEVProcess]

Finance[DeterministicProcess]

Finance[Diffusion]

Finance[GaussianShortRateProcess]

Finance[GeometricBrownianMotion]

Finance[HestonProcess]

Finance[OrnsteinUhlenbeckProcess]

Finance[SquareRootDiffusion]

Finance[StochasticProcesses]

Finance[WienerProcess]

 


Download Help Document