ODE Steps for Systems of ODEs with IVP
Overview
Examples
This help page gives a few examples of using the command ODESteps to solve systems of ordinary differential equations with initial values.
See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.
with⁡Student:-ODEs:
high_order_ivp1≔diff⁡y⁡x,x,x,x+3⁢diff⁡y⁡x,x,x+4⁢diff⁡y⁡x,x+2⁢y⁡x=0,eval⁡diff⁡y⁡x,x,x=0=−1,eval⁡diff⁡y⁡x,x,x,x=0=2,y⁡0=1
high_order_ivp1≔ⅆ3ⅆx3y⁡x+3⁢ⅆ2ⅆx2y⁡x+4⁢ⅆⅆxy⁡x+2⁢y⁡x=0,ⅆ2ⅆx2y⁡xx=0|ⅆ2ⅆx2y⁡xx=0=2,ⅆⅆxy⁡xx=0|ⅆⅆxy⁡xx=0=−1,y⁡0=1
ODESteps⁡high_order_ivp1
Let's solveⅆ3ⅆx3y⁡x+3⁢ⅆ2ⅆx2y⁡x+4⁢ⅆⅆxy⁡x+2⁢y⁡x=0,ⅆ2ⅆx2y⁡xx=0|ⅆ2ⅆx2y⁡xx=0=2,ⅆⅆxy⁡xx=0|ⅆⅆxy⁡xx=0=−1,y⁡0=1•Highest derivative means the order of the ODE is3ⅆ3ⅆx3y⁡x•Characteristic polynomial of ODEr3+3⁢r2+4⁢r+2=0•Roots of the characteristic polynomialr=−1,−1−I,−1+I•Solution fromr=−1y1⁡x=ⅇ−x•Solutions fromr=−1−Iandr=−1+Iy2⁡x=ⅇ−x⁢sin⁡x,y3⁡x=ⅇ−x⁢cos⁡x•General solution of the ODEy⁡x=c__1⁢y1⁡x+c__2⁢y2⁡x+c__3⁢y3⁡x•Substitute in solutions and simplifyy⁡x=ⅇ−x⁢c__1+c__2⁢sin⁡x+c__3⁢cos⁡x•Use the initial conditiony⁡0=11=c__1+c__3•Calculate the 1st derivative of the solutionⅆⅆxy⁡x=−ⅇ−x⁢c__1+c__2⁢sin⁡x+c__3⁢cos⁡x+ⅇ−x⁢c__2⁢cos⁡x−c__3⁢sin⁡x•Use the initial conditionⅆⅆxy⁡xx=0|ⅆⅆxy⁡xx=0=−1−1=−c__1−c__3+c__2•Calculate the 2nd derivative of the solutionⅆ2ⅆx2y⁡x=ⅇ−x⁢c__1+c__2⁢sin⁡x+c__3⁢cos⁡x−2⁢ⅇ−x⁢c__2⁢cos⁡x−c__3⁢sin⁡x+ⅇ−x⁢−c__2⁢sin⁡x−c__3⁢cos⁡x•Use the initial conditionⅆ2ⅆx2y⁡xx=0|ⅆ2ⅆx2y⁡xx=0=22=c__1−2⁢c__2•Solve for the unknown coefficientsc__1=2,c__2=0,c__3=−1•Solution to the IVPy⁡x=ⅇ−x⁢2−cos⁡x
macro⁡Y=y1⁡x,y2⁡x:
ivpsys2≔diff⁡Y,x=%.⁡Matrix⁡7,1,`-`⁡4,3,Y,eval⁡Y,x=0=1,1
ivpsys2≔ⅆⅆxy1⁡xⅆⅆxy2⁡x=71−43·y1⁡xy2⁡x,y1⁡0y2⁡0=11
ODESteps⁡ivpsys2
Let's solveⅆⅆxy1⁡xⅆⅆxy2⁡x=71−43·y1⁡xy2⁡x,y1⁡0y2⁡0=11•Define vectory→⁡x=y1⁡xy2⁡x•System to solveⅆⅆxy→⁡x=71−43·y→⁡x•Define the coefficient matrixA=71−43•Rewrite the system asⅆⅆxy→⁡x=A·y→⁡x•To solve the system, find the eigenvalues and eigenvectors ofA•Eigenpairs ofA5,−121,5,00•Consider eigenpair, with eigenvalue of algebraic multiplicity 25,−121•First solution from eigenvalue5y→1⁡x=ⅇ5⁢x⋅−121•Form of the 2nd homogeneous solution wherep→is to be solved for,λ=5is the eigenvalue, andv→is the eigenvectory→2⁡x=ⅇλ⁢x⁢x⁢v→+p→•Note that thexmultiplyingv→makes this solution linearly independent to the 1st solution obtained fromλ=5•Substitutey→2⁡xinto the homogeneous systemλ⁢ⅇλ⁢x⁢x⁢v→+p→+ⅇλ⁢x⁢v→=ⅇλ⁢x⁢A·x⁢v→+p→•Use the fact thatv→is an eigenvector ofAλ⁢ⅇλ⁢x⁢x⁢v→+p→+ⅇλ⁢x⁢v→=ⅇλ⁢x⁢λ⁢x⁢v→+A·p→•Simplify equationλ⁢p→+v→=A·p→•Make use of the identity matrixIλ⋅I·p→+v→=A·p→•Conditionp→must meet fory→2⁡xto be a solution to the homogeneous systemA−λ⋅I·p→=v→•Choosep→to use in the second solution to the homogeneous system from eigenvalue571−43−5⋅1001·p→=−121•Choice ofp→p→=−140•Second solution from eigenvalue5y→2⁡x=ⅇ5⁢x⋅x⋅−121+−140•General solution to the system of ODEsy→=c__1⁢y→1⁡x+c__2⁢y→2⁡x•Substitute solutions into the general solutiony→=c__1⁢ⅇ5⁢x⋅−121+c__2⁢ⅇ5⁢x⋅x⋅−121+−140▫Fundamental matrix◦Letφ⁡xbe the matrix whose columns are the independent solutions of the homogeneous system.φ⁡x=−ⅇ5⁢x2ⅇ5⁢x⁢−x2−14ⅇ5⁢xⅇ5⁢x⁢x◦The fundamental matrix,Φ⁡xis a normalized version ofφ⁡xsatisfyingΦ⁡0=IwhereIis the identity matrixΦ⁡x=φ⁡x·φ⁡0−1◦Substitute the value ofφ⁡xandφ⁡0Φ⁡x=−ⅇ5⁢x2ⅇ5⁢x⁢−x2−14ⅇ5⁢xⅇ5⁢x⁢x·−12−1410−1◦Evaluate and simplify to get the fundamental matrixΦ⁡x=ⅇ5⁢x⁢2⁢x+1ⅇ5⁢x⁢x−4⁢ⅇ5⁢x⁢xⅇ5⁢x⁢1−2⁢x•Remember that the fundamental matrix has columns that are basis vectors atx=0, so the solution to the IVP is the columns of the fundamental matrix multiplied by the entries of the initial condition vectory→⁡x=Φ⁡x·11•Compute solution to the IVPy→⁡x=ⅇ5⁢x⁢2⁢x+1+ⅇ5⁢x⁢x−4⁢ⅇ5⁢x⁢x+ⅇ5⁢x⁢1−2⁢x•Solution to the system of ODEsy1⁡xy2⁡x=ⅇ5⁢x⁢3⁢x+1ⅇ5⁢x⁢−6⁢x+1
ivpsys3≔diff⁡Y,x=Matrix⁡1,2,3,2·Y+1,exp⁡x,eval⁡Y,x=1=0,−1
ivpsys3≔ⅆⅆxy1⁡xⅆⅆxy2⁡x=y1⁡x+2⁢y2⁡x+13⁢y1⁡x+2⁢y2⁡x+ⅇx,y1⁡1y2⁡1=0−1
ODESteps⁡ivpsys3
Let's solveⅆⅆxy1⁡xⅆⅆxy2⁡x=y1⁡x+2⁢y2⁡x+13⁢y1⁡x+2⁢y2⁡x+ⅇx,y1⁡1y2⁡1=0−1•Define vectory→⁡x=y1⁡xy2⁡x•System to solveⅆⅆxy→⁡x=1232·y→⁡x+1ⅇx•Define the forcing functionf→⁡x=1ⅇx•Define the coefficient matrixA=1232•Rewrite the system asⅆⅆxy→⁡x=A·y→⁡x+f→•To solve the system, find the eigenvalues and eigenvectors ofA•Eigenpairs ofA−1,−11,4,231•Consider eigenpair−1,−11•Solution to homogeneous system from eigenpairy→1=ⅇ−x⋅−11•Consider eigenpair4,231•Solution to homogeneous system from eigenpairy→2=ⅇ4⁢x⋅231•General solution of the system of ODEs can be written in terms of the particular solutiony→p⁡xy→⁡x=c__1⁢y→1+c__2⁢y→2+y→p⁡x▫Fundamental matrix◦Letφ⁡xbe the matrix whose columns are the independent solutions of the homogeneous system.φ⁡x=−ⅇ−x2⁢ⅇ4⁢x3ⅇ−xⅇ4⁢x◦The fundamental matrix,Φ⁡x,1is a normalized version ofφ⁡xsatisfyingΦ⁡1,1=IwhereIis the identity matrixΦ⁡x=φ⁡x·φ⁡1−1◦Substitute the value ofφ⁡xandφ⁡1Φ⁡x,1=−ⅇ−x2⁢ⅇ4⁢x3ⅇ−xⅇ4⁢x·−ⅇ−12⁢ⅇ43ⅇ−1ⅇ4−1◦Evaluate and simplify to get the fundamental matrixΦ⁡x,1=3⁢ⅇ1−x5+2⁢ⅇ−4+4⁢x5−2⁢ⅇ1−x5+2⁢ⅇ−4+4⁢x5−3⁢ⅇ1−x5+3⁢ⅇ−4+4⁢x52⁢ⅇ1−x5+3⁢ⅇ−4+4⁢x5▫Find a particular solution of the system of ODEs using variation of parameters◦Let the particular solution be the fundamental matrix multiplied byv→⁡xand solve forv→⁡xy→p⁡x=Φ⁡x·v→⁡x◦Take the derivative of the particular solutionⅆⅆxy→p⁡x=ⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x◦Substitute particular solution and its derivative into the system of ODEsⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x=A·Φ⁡x·v→⁡x+f→⁡x◦The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous systemA·Φ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x=A·Φ⁡x·v→⁡x+f→⁡x◦Cancel like termsΦ⁡x·ⅆⅆxv→⁡x=f→⁡x◦Multiply by the inverse of the fundamental matrixⅆⅆxv→⁡x=Φ⁡x−1·f→⁡x◦Integrate to solve forv→⁡xv→⁡x=∫0xΦ⁡s−1·f→⁡sⅆs◦Plugv→⁡xinto the equation for the particular solutiony→p⁡x=Φ⁡x·∫0xΦ⁡s−1·f→⁡sⅆs◦Plug in the fundamental matrix and the forcing function and computey→p⁡x=7⁢ⅇ4⁢x30+12−ⅇx3−2⁢ⅇ−x57⁢ⅇ4⁢x20−34+2⁢ⅇ−x5•Plug particular solution back into general solutiony→⁡x=c__1⁢y→1+c__2⁢y→2+7⁢ⅇ4⁢x30+12−ⅇx3−2⁢ⅇ−x57⁢ⅇ4⁢x20−34+2⁢ⅇ−x5•Remember that the fundamental matrix has columns that are basis vectors atx=1, so we can use the fundamental matrix to solve the IVP. Define the initial condition vectora→=0−1•From here on we will writeΦ⁡x,1asΦ⁡xΦ⁡x=Φ⁡x,1•This is the form of the solutiony→⁡x=Φ⁡x·a→−yp⁡1+yp⁡x•Since the fundamental matrix is the identity atx=1, evaluating this solution atx=1gives the initial condition as requiredy→⁡1=a→−yp⁡1+yp⁡1▫Show that this solution solves the ODE◦First calculateⅆⅆxy→⁡xⅆⅆxy→⁡x=ⅆⅆxΦ⁡x·a→−yp⁡1+ⅆⅆxyp⁡x◦Useⅆⅆxyp⁡x=ⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡xfound while computingyp⁡xⅆⅆxy→⁡x=ⅆⅆxΦ⁡x·a→−yp⁡1+ⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x◦The columns of the fundamental matrix are solutions to the homogeneous system so its derivative follows that of the homogeneous system, that isⅆⅆxΦ⁡x=A·Φ⁡xⅆⅆxy→⁡x=A·Φ⁡x·a→−yp⁡1+A·Φ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x◦Recall that when finding the particular solution to the system we foundf→⁡x=Φ⁡x·ⅆⅆxv→⁡xⅆⅆxy→⁡x=A·Φ⁡x·a→−yp⁡1+A·yp⁡x+f→⁡x◦Group termsⅆⅆxy→⁡x=A·Φ⁡x·a→−yp⁡1+yp⁡x+f→⁡x◦Usingy→⁡x=Φ⁡x·a→−yp⁡1+yp⁡x, it is clear thaty→⁡xis a solution to the systemⅆⅆxy→⁡x=A·y→⁡x+f→⁡x•Solution to the system of ODEsy1⁡xy2⁡x=−ⅇ1−x5−3⁢ⅇ−4+4⁢x10+12+ⅇ2−x5−ⅇx3+2⁢ⅇ−3+4⁢x15ⅇ1−x5−9⁢ⅇ−4+4⁢x20−34−ⅇ2−x5+ⅇ−3+4⁢x5
ivpsys4≔diff⁡w⁡x,x=w⁡x+2⁢z⁡x,diff⁡z⁡x,x=3⁢w⁡x+2⁢z⁡x+exp⁡x,w⁡−1=2,z⁡−1=−2
ivpsys4≔ⅆⅆxw⁡x=w⁡x+2⁢z⁡x,ⅆⅆxz⁡x=3⁢w⁡x+2⁢z⁡x+ⅇx,w⁡−1=2,z⁡−1=−2
ODESteps⁡ivpsys4
Let's solveⅆⅆxw⁡x=w⁡x+2⁢z⁡x,ⅆⅆxz⁡x=3⁢w⁡x+2⁢z⁡x+ⅇx,w⁡−1=2,z⁡−1=−2•Define vectorw→⁡x=w⁡xz⁡x•Convert system into a vector equationⅆⅆxw→⁡x=1232·w→⁡x+0ⅇx•System to solveⅆⅆxw→⁡x=1232·w→⁡x+0ⅇx•Define the forcing functionf→⁡x=0ⅇx•Define the coefficient matrixA=1232•Rewrite the system asⅆⅆxw→⁡x=A·w→⁡x+f→•To solve the system, find the eigenvalues and eigenvectors ofA•Eigenpairs ofA−1,−11,4,231•Consider eigenpair−1,−11•Solution to homogeneous system from eigenpairw→1=ⅇ−x⋅−11•Consider eigenpair4,231•Solution to homogeneous system from eigenpairw→2=ⅇ4⁢x⋅231•General solution of the system of ODEs can be written in terms of the particular solutionw→p⁡xw→⁡x=c__1⁢w→1+c__2⁢w→2+w→p⁡x▫Fundamental matrix◦Letφ⁡xbe the matrix whose columns are the independent solutions of the homogeneous system.φ⁡x=−ⅇ−x2⁢ⅇ4⁢x3ⅇ−xⅇ4⁢x◦The fundamental matrix,Φ⁡x,−1is a normalized version ofφ⁡xsatisfyingΦ⁡−1,−1=IwhereIis the identity matrixΦ⁡x=φ⁡x·φ⁡−1−1◦Substitute the value ofφ⁡xandφ⁡−1Φ⁡x,−1=−ⅇ−x2⁢ⅇ4⁢x3ⅇ−xⅇ4⁢x·−ⅇ2⁢ⅇ−43ⅇⅇ−4−1◦Evaluate and simplify to get the fundamental matrixΦ⁡x,−1=3⁢ⅇ−1−x5+2⁢ⅇ4+4⁢x5−2⁢ⅇ−1−x5+2⁢ⅇ4+4⁢x5−3⁢ⅇ−1−x5+3⁢ⅇ4+4⁢x52⁢ⅇ−1−x5+3⁢ⅇ4+4⁢x5▫Find a particular solution of the system of ODEs using variation of parameters◦Let the particular solution be the fundamental matrix multiplied byv→⁡xand solve forv→⁡xw→p⁡x=Φ⁡x·v→⁡x◦Take the derivative of the particular solutionⅆⅆxw→p⁡x=ⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x◦Substitute particular solution and its derivative into the system of ODEsⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x=A·Φ⁡x·v→⁡x+f→⁡x◦The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous systemA·Φ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x=A·Φ⁡x·v→⁡x+f→⁡x◦Cancel like termsΦ⁡x·ⅆⅆxv→⁡x=f→⁡x◦Multiply by the inverse of the fundamental matrixⅆⅆxv→⁡x=Φ⁡x−1·f→⁡x◦Integrate to solve forv→⁡xv→⁡x=∫0xΦ⁡s−1·f→⁡sⅆs◦Plugv→⁡xinto the equation for the particular solutionw→p⁡x=Φ⁡x·∫0xΦ⁡s−1·f→⁡sⅆs◦Plug in the fundamental matrix and the forcing function and computew→p⁡x=ⅇ−x5+2⁢ⅇ4⁢x15−ⅇx3−ⅇ−x5+ⅇ4⁢x5•Plug particular solution back into general solutionw→⁡x=c__1⁢w→1+c__2⁢w→2+ⅇ−x5+2⁢ⅇ4⁢x15−ⅇx3−ⅇ−x5+ⅇ4⁢x5•Remember that the fundamental matrix has columns that are basis vectors atx=−1, so we can use the fundamental matrix to solve the IVP. Define the initial condition vectora→=2−2•From here on we will writeΦ⁡x,−1asΦ⁡xΦ⁡x=Φ⁡x,−1•This is the form of the solutiony→⁡x=Φ⁡x·a→−yp⁡−1+yp⁡x•Since the fundamental matrix is the identity atx=−1, evaluating this solution atx=−1gives the initial condition as requiredy→⁡−1=a→−yp⁡−1+yp⁡−1▫Show that this solution solves the ODE◦First calculateⅆⅆxy→⁡xⅆⅆxy→⁡x=ⅆⅆxΦ⁡x·a→−yp⁡−1+ⅆⅆxyp⁡x◦Useⅆⅆxyp⁡x=ⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡xfound while computingyp⁡xⅆⅆxy→⁡x=ⅆⅆxΦ⁡x·a→−yp⁡−1+ⅆⅆxΦ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x◦The columns of the fundamental matrix are solutions to the homogeneous system so its derivative follows that of the homogeneous system, that isⅆⅆxΦ⁡x=A·Φ⁡xⅆⅆxy→⁡x=A·Φ⁡x·a→−yp⁡−1+A·Φ⁡x·v→⁡x+Φ⁡x·ⅆⅆxv→⁡x◦Recall that when finding the particular solution to the system we foundf→⁡x=Φ⁡x·ⅆⅆxv→⁡xⅆⅆxy→⁡x=A·Φ⁡x·a→−yp⁡−1+A·yp⁡x+f→⁡x◦Group termsⅆⅆxy→⁡x=A·Φ⁡x·a→−yp⁡−1+yp⁡x+f→⁡x◦Usingy→⁡x=Φ⁡x·a→−yp⁡−1+yp⁡x, it is clear thaty→⁡xis a solution to the systemⅆⅆxy→⁡x=A·y→⁡x+f→⁡x•Substitute in vector of dependent variablesw⁡xz⁡x=2⁢ⅇ3+4⁢x15−ⅇx3+ⅇ−2−x5+2⁢ⅇ−1−xⅇ3+4⁢x5−ⅇ−2−x5−2⁢ⅇ−1−x•Solution to the system of ODEsw⁡x=2⁢ⅇ3+4⁢x15−ⅇx3+ⅇ−2−x5+2⁢ⅇ−1−x,z⁡x=ⅇ3+4⁢x5−ⅇ−2−x5−2⁢ⅇ−1−x
See Also
diff
Int
Student
Student[ODEs]
Student[ODEs][ODESteps]
Download Help Document