 ifactors - Maple Help

ifactors

integer factorization Calling Sequence ifactors(n) ifactors(n, opt) Parameters

 n - any integer opt - option Description

 • The ifactors function returns the complete integer factorization of the integer or fraction n.
 • The result is returned as in the form $\left[u,\left[\left[{p}_{1},{e}_{1}\right],\mathrm{...},\left[{p}_{m},{e}_{m}\right]\right]\right]$ where $n=u{p}_{1}^{{e}_{1}}\cdots {p}_{m}^{{e}_{m}}$, ${p}_{i}$ is a prime integer, ${e}_{i}$ is its exponent (multiplicity) and u is the sign of n.
 • This function supports the same options as ifactor. Examples

 > $\mathrm{ifactors}\left(61\right)$
 $\left[{1}{,}\left[\left[{61}{,}{1}\right]\right]\right]$ (1)
 > $\mathrm{ifactors}\left(-120\right)$
 $\left[{-1}{,}\left[\left[{2}{,}{3}\right]{,}\left[{3}{,}{1}\right]{,}\left[{5}{,}{1}\right]\right]\right]$ (2)
 > $\mathrm{ifactors}\left(\frac{3}{4}\right)$
 $\left[{1}{,}\left[\left[{2}{,}{-2}\right]{,}\left[{3}{,}{1}\right]\right]\right]$ (3)
 > $\mathrm{ifactors}\left(0\right)$
 $\left[{0}{,}\left[\right]\right]$ (4)
 > $\mathrm{ifactors}\left(1\right)$
 $\left[{1}{,}\left[\right]\right]$ (5)
 > $\mathrm{ifactors}\left(1690575565024346828676664200680,\mathrm{easy}\right)$
 $\left[{1}{,}\left[\left[{2}{,}{3}\right]{,}\left[{5}{,}{1}\right]{,}\left[{17}{,}{2}\right]{,}\left[{\mathrm{_c27_1}}{,}{1}\right]\right]\right]$ (6)