convert/Cylinder
convert special functions admitting 1F1 or 0F1 hypergeometric representation into Cylinder functions
Calling Sequence
Parameters
Description
Examples
convert(expr, Cylinder)
expr
-
Maple expression, equation, or set or list of them
convert/Cylinder converts, when possible, special functions admitting a 1F1 or 0F1 hypergeometric representation into Cylinder functions. The Cylinder functions are
FunctionAdvisor( Cylinder );
The 3 functions in the "Cylinder" class are:
CylinderD,CylinderU,CylinderV
HermiteHa,zLaguerreL12a,−12,12z2
HermiteHa,zLaguerreLa2,−12,z22
convert,Cylinder
CylinderDa,z2ⅇz22a2−12a2ⅇz24Γ12−a2CylinderDa,z2π+CylinderDa,z2ⅇz22a2−12a2ⅇz24Γ12−a2CylinderDa,−z2π
erfca,z
convert,Cylinderassuminga::posint
CylinderD−1−a,z22ⅇz222aπ
2π12z212a−14Γ12a+14hypergeom12a+34,32,12z2+π12hypergeom12a+14,12,12z2Γ12a+34212a−34
2πzhypergeoma2+34,32,z222a2−14Γa2+14+πhypergeoma2+14,12,z22Γa2+342a2−34
ⅇz242a2+142a2−14−2a2+342a2−34CylinderD−a−12,z22a2−142a2−34+ⅇz242a2+142a2−14+2a2+342a2−34CylinderD−a−12,−z22a2−142a2−34
collect,CylinderD,simplify
2ⅇz24CylinderD−a−12,−z
When converting to a function class (e.g. Cylinder) it is possible to request additional conversion rules to be performed. Compare for instance these two different outputs:
MeijerG14−12a,,0,−12,−12z2
MeijerG14−a2,,0,−12,−z22
−ⅇz242a2+34Γ12+aCylinderD−a−12,z2πz2a−12+ⅇz24CylinderD−a−12,−z2a2+34Γ12+a2πz2a−12
convert,Cylinder,raise a
−ⅇz242a2+34Γ12+aCylinderD32−a,z2a−1πz2a−12+ⅇz242a2+34Γ12+aCylinderD32−a,−z2a−1πz2a−12+ⅇz242a2+34Γ12+aCylinderD−a+12,z2a−1π2a−12+ⅇz24CylinderD−a+12,−z2a2+34Γ12+a2a−1π2a−12
See Also
convert
convert/to_special_function
FunctionAdvisor
Download Help Document