Linsolve
inert matrix solve
Calling Sequence
Parameters
Description
Examples
Linsolve(A, b) mod n
Linsolve(A, b, 'r', 't') mod n
A
-
rectangular Matrix
b
Vector
'r'
(optional) name
't'
n
an integer, the modulus
The Linsolve function is a placeholder for representing the solution x to the linear system Ax=b.
The call Linsolve(A,b) mod n computes the solution vector b if it exists of the linear system Ax=b over a finite ring of characteristic n. This includes finite fields, GFp, the integers mod p, and GFpk where elements of GFpk are expressed as polynomials in RootOfs.
If an optional third parameter r is specified, and it is a name, it is assigned the rank of the matrix A.
A linear system with an infinite set of solutions will be parametrized in terms of variables. Maple uses the global names _t[1], _t[2], ... are used by default. If an optional fourth parameter t is specified, and it is a name, the names t[1], t[2], etc. will be used instead.
A≔Matrix1,2,3,1,3,0,1,4,3
A≔123130143
b≔Vector1,2,3
b≔123
x≔LinsolveA,bmod5
x≔410
A·x−bmod5
000
x≔LinsolveA,b,r,tmod6
x≔5+3t31+3t3t3
r
2
A·x−bmod6
An example using GF(2^4).
aliasa=RootOfy4+y+1mod2:
A≔Matrix1,a,a2,1,a2,1,1,a3,a2
A≔1aa21a211a3a2
b≔Vector1,a,a2
b≔1aa2
x≔LinsolveA,bmod2
x≔0a3+10
z≔A·x−bmod2
z≔1+aa3+1a2a3+1+aa3a3+1+a2
Expandconvertz,listmod2
0,0,0
See Also
Gaussjord
Inverse
mod
Modular[LinearSolve]
Download Help Document