Transporter - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Transporter

find the transporter of a LAVF to another LAVF in the third LAVF

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Transporter(L, M, N)

Parameters

L, M, N

-

LAVF objects live on same space.

Description

• 

Let L, M, N be LAVF objects living on the same space. Then Transporter(L,M,N) finds the transporter of M to N in L, as a new LAVF object.

• 

By definition, the transporter of M to N in Lconsists of the vector fields in L that map vector fields in M to vector fields in N, under commutator. That is, it is the subspace XLL|XL,XMN,XMM where  L,M,N are subspaces of some Lie algebra.

• 

Some Lie algebraic structural methods (Center, Centraliser, Normaliser, and UpperCentralSeries) are front-ends to Transporter.

• 

This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y:

VVectorFieldξx,yDx+ηx,yDy,space=x,y

Vξⅆⅆx+ηⅆⅆy

(1)

SLHPDEdiffξx,y,x=0,diffξx,y,y=0,diffηx,y,x,x=0,diffηx,y,y=0,indep=x,y,dep=ξ,η

Sξx=0,ξy=0,ηx,x=0,ηy=0,indep=x,y,dep=ξ,η

(2)

S1LHPDEdiffξx,y,x=0,diffξx,y,y=0,ηx,y=0,indep=x,y,dep=ξ,η

S1ξx=0,ξy=0,η=0,indep=x,y,dep=ξ,η

(3)

S2LHPDEξx,y=0,diffηx,y,x=ηx,yx,diffηx,y,y=0,indep=x,y,dep=ξ,η

S2ξ=0,ηx=ηx,ηy=0,indep=x,y,dep=ξ,η

(4)

Constructing some LAVFs,

LLAVFV,S

Lξⅆⅆx+ηⅆⅆy&whereηx,x=0,ξx=0,ξy=0,ηy=0

(5)

L1LAVFV,S1

L1ξⅆⅆx+ηⅆⅆy&whereξx=0,ξy=0,η=0

(6)

L2LAVFV,S2

L2ξⅆⅆx+ηⅆⅆy&whereηx=ηx,ηy=0,ξ=0

(7)

L0LAVFV,trivial

L0ξⅆⅆx+ηⅆⅆy&whereξ=0,η=0

(8)

TransporterL,L2,L1

ξⅆⅆx+ηⅆⅆy&whereηx,x=0,ηy=0,ξ=0

(9)

This is centre of L

TransporterL,L,L0

ξⅆⅆx+ηⅆⅆy&whereηx=0,ηy=0,ξ=0

(10)

and the second centre of L

TransporterL,L,CentreL

ξⅆⅆx+ηⅆⅆy&whereηx,x=0,ξx=0,ξy=0,ηy=0

(11)

The upper central series of L is a sequences of L consisting a trivial LAVF, centre of L, and the second centre of L.

UpperCentralSeriesL

ξⅆⅆx+ηⅆⅆy&whereξ=0,η=0,ξⅆⅆx+ηⅆⅆy&whereηx=0,ηy=0,ξ=0,ξⅆⅆx+ηⅆⅆy&whereηx,x=0,ξx=0,ξy=0,ηy=0

(12)

Compatibility

• 

The Transporter command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]

LieAlgebrasOfVectorFields[LAVF]

IsLieAlgebra

Center

Centraliser

Normaliser

UpperCentralSeries