IsIdeal - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


IsIdeal

check if the solutions of a LAVF are an ideal in the Lie algebra of another LAVF

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsIdeal(L1, L2)

Parameters

L1, L2

-

LAVF objects that are Lie algebras i.e. IsLieAlgebra(obj) returns true, see IsLieAlgebra.

Description

• 

Let L1, L2 be LAVF objects that are Lie algebras. Then IsIdeal(L1,L2) checks if solutions of L1 are an ideal in the Lie algebra of solutions of L2.

• 

Internally the method returns true if L1,L2L1 (i.e. IsInvariant(L1,L2) returns true), L2 is Lie algebra (i.e. IsLieAlgebra(L2) returns true), and L1L2 (i.e. IsSubspace(L1,L2) returns true). False otherwise.

• 

This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y:

VVectorFieldξx,yDx+ηx,yDy,space=x,y

Vξⅆⅆx+ηⅆⅆy

(1)

SLHPDEdiffξx,y,x=0,diffξx,y,y=0,diffηx,y,x=0,diffηx,y,y=0,indep=x,y,dep=ξ,η

Sξx=0,ξy=0,ηx=0,ηy=0,indep=x,y,dep=ξ,η

(2)

E2LHPDEdiffξx,y,y,y=0,diffηx,y,x=diffξx,y,y,diffηx,y,y=0,diffξx,y,x=0,indep=x,y,dep=ξ,η

E2ξy,y=0,ηx=ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η

(3)

We first construct these two LAVFs,

LLAVFV,S

Lξⅆⅆx+ηⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0

(4)

LE2LAVFV,E2

LE2ξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0

(5)

For the solutions of L be an ideal in the Lie algebra of LE2, the following conditions must be true..

IsInvariantL,LE2

true

(6)

IsLieAlgebraLE2

true

(7)

IsSubspaceL,LE2

true

(8)

or by using a more direct method.

IsIdealL,LE2

true

(9)

conversely will be false since LE2 is not subalgebra of L.

IsIdealLE2,L

false

(10)

Compatibility

• 

The IsIdeal command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]

LieAlgebrasOfVectorFields[LAVF]

IsLieAlgebra

IsInvariant

IsSubspace