Dimension - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Dimension

calculate the dimension of a Distribution object

Codimension

calculate the codimension of a Distribution object

IsTrivial

check if a Distribution object is trivial

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Dimension( dist)

Codimension( dist)

IsTrivial( dist)

Parameters

dist

-

a Distribution object

Description

• 

The Dimension method returns the dimension of the subspace of tangent space spanned by a distribution.

• 

The Codimension method returns the codimension of this subspace. If a distribution of dimension r lives on a space of dimension n, the codimension is n-r.

• 

The IsTrivial method returns true if dist is of dimension 0 and false otherwise.

• 

These methods are associated with the Distribution object. For more detail see Overview of the Distribution object.

Examples

withLieAlgebrasOfVectorFields:

Build vector fields associated with 3-d spatial rotations...

RxVectorFieldzDy+yDz,space=x,y,z

Rxzⅆⅆy+yⅆⅆz

(1)

RyVectorFieldxDz+zDx,space=x,y,z

Ryzⅆⅆxxⅆⅆz

(2)

RzVectorFieldyDx+xDy,space=x,y,z

Rzyⅆⅆx+xⅆⅆy

(3)

Construct the associated distribution....

ΣDistributionRx,Ry,Rz

Σyⅆⅆxx+ⅆⅆy,zⅆⅆxx+ⅆⅆz

(4)

DimensionΣ

2

(5)

CodimensionΣ

1

(6)

IsTrivialΣ

false

(7)

Compatibility

• 

The Dimension, Codimension and IsTrivial commands were introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

Distribution (Object overview)

LieAlgebrasOfVectorFields[Distribution]

VectorField (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields (Package overview)