QuasiDihedralGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : QuasiDihedralGroup

GroupTheory

  

SemiDihedralGroup

  

construct a semi-dihedral group as a permutation group or a finitely presented group

  

QuasiDihedralGroup

  

construct a quasi-dihedral group as a permutation group or a finitely presented group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

SemiDihedralGroup( n, formopt )

QuasiDihedralGroup( n, formopt )

Parameters

n

-

algebraic; understood to be an integer greater than 1

formopt

-

equation; (optional) equation of the form form = "fpgroup" or form = "permgroup" (default)

Description

• 

The semi-dihedral of degree n is a non-abelian group of order 8n which contains a cyclic subgroup of order 4n for n>1. It is defined by a presentation of the form

xy,|,xn=y2,,,xy=x-1

• 

The SemiDihedralGroup( n ) command returns a semi-dihedral group, either as a permutation group (the default) or as a finitely presented group.

• 

You can specify the form of the group returned explicitly by passing one of the options 'form' = "permgroup" or 'form' = "fpgroup".

• 

If the parameter n is not a positive integer, then a symbolic group representing the semi-dihedral group of order 8*n is returned.

• 

If n is a power of 2, the resulting group is a quasi-dihedral group. In other words, a quasi-dihedral group is a semi-dihedral 2-group. (This is analogous to the fact that a quaternion group is a dicyclic 2-group.) A semi-dihedral group is nilpotent only if it is quasi-dihedral.

• 

The QuasiDihedralGroup( n ) command returns a quasi-dihedral group of order 2n1, provided that n is an integer greater than 1. If n is a non-numeric algebraic expression, then a symbolic group representing the quasi-dihedral group of order 2n1 is returned.

Examples

withGroupTheory:

GSemiDihedralGroup21

GSD21

(1)

GroupOrderG

168

(2)

ClassNumberG

48

(3)

IsNilpotentG

false

(4)

IsSupersolubleG

true

(5)

GroupOrderDerivedSubgroupG

21

(6)

IsCyclicDerivedSubgroupG

true

(7)

The center of a semi-dihedral group is always cyclic, but the order depends upon whether n is odd or even. For odd n, the center has order 4.

IsCyclicCenterG

true

(8)

GroupOrderCenterG

4

(9)

For even n, the center has order 2.

GroupOrderCenterSemiDihedralGroup20

2

(10)

seqGroupOrderCenterSemiDihedralGroupn,n=2..20

2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2

(11)

The permutation representation used in Maple is always transitive, but imprimitive.

IsTransitiveG

true

(12)

IsPrimitiveG

false

(13)

BlocksG

1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84

(14)

orseqIsPrimitiveSemiDihedralGroupn,n=2..20

false

(15)

andseqIsTransitiveSemiDihedralGroupn,n=2..20

true

(16)

Use the form = "fpgroup" option to construct a finitely presented semi-dihedral group.

GSemiDihedralGroup6,form=fpgroup

GSD6

(17)

GroupOrderG

48

(18)

Note that dihedral and semi-dihedral groups of the same order are non-isomorphic.

AreIsomorphicSemiDihedralGroup4,DihedralGroup16

false

(19)

DisplayCharacterTableSemiDihedralGroup5

C

1a

2a

2b

2c

4a

4b

4c

4d

5a

5b

10a

10b

20a

20b

20c

20d

|C|

1

1

5

5

1

1

5

5

2

2

2

2

2

2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

χ__2

1

−1

−1

1

−I

I

I

−I

1

1

−1

−1

I

−I

I

−I

χ__3

1

−1

−1

1

I

−I

−I

I

1

1

−1

−1

−I

I

−I

I

χ__4

1

−1

1

−1

−I

I

−I

I

1

1

−1

−1

I

−I

I

−I

χ__5

1

−1

1

−1

I

−I

I

−I

1

1

−1

−1

−I

I

−I

I

χ__6

1

1

−1

−1

−1

−1

1

1

1

1

1

1

−1

−1

−1

−1

χ__7

1

1

−1

−1

1

1

−1

−1

1

1

1

1

1

1

1

1

χ__8

1

1

1

1

−1

−1

−1

−1

1

1

1

1

−1

−1

−1

−1

χ__9

2

−2

0

0

2I

2I

0

0

−135−1251

−125−135

−135+−125+1

−135−125

−1110+−1910

−1310+−1710

−1310−1710

−1110−1910

χ__10

2

−2

0

0

2I

2I

0

0

−125−135

−135−1251

−135−125

−135+−125+1

−1310−1710

−1110−1910

−1110+−1910

−1310+−1710

χ__11

2

−2

0

0

2I

2I

0

0

−135−1251

−125−135

−135+−125+1

−135−125

−1110−1910

−1310−1710

−1310+−1710

−1110+−1910

χ__12

2

−2

0

0

2I

2I

0

0

−125−135

−135−1251

−135−125

−135+−125+1

−1310+−1710

−1110+−1910

−1110−1910

−1310−1710

χ__13

2

2

0

0

−2

−2

0

0

−135−1251

−125−135

−135−1251

−125−135

−135−125

−135+−125+1

−135+−125+1

−135−125

χ__14

2

2

0

0

−2

−2

0

0

−125−135

−135−1251

−125−135

−135−1251

−135+−125+1

−135−125

−135−125

−135+−125+1

χ__15

2

2

0

0

2

2

0

0

−135−1251

−125−135

−135−1251

−125−135

−125−135

−135−1251

−135−1251

−125−135

χ__16

2

2

0

0

2

2

0

0

−125−135

−135−1251

−125−135

−135−1251

−135−1251

−125−135

−125−135

−135−1251

GQuasiDihedralGroup2

GQD2

(20)

GroupOrderG

16

(21)

seqGroupOrderQuasiDihedralGroupn,n=2..8

16,32,64,128,256,512,1024

(22)

IsRegularPGroupQuasiDihedralGroup11

false

(23)

AQuasiDihedralGroup3,form=fpgroup

AQD3

(24)

BSemiDihedralGroup4,form=fpgroup

BSD4

(25)

AreIsomorphicA,B

true

(26)

See Also

GroupTheory[CharacterTable]

GroupTheory[ClassNumber]

GroupTheory[GroupOrder]