GroupTheory
ChevalleyF4
Calling Sequence
Parameters
Description
Examples
Compatibility
ChevalleyF4( q )
q
-
algebraic; an algebraic expression, taken to be a prime power
The Chevalley group F4q , for a prime power q, is a simple group of Lie type.
The ChevalleyF4( q ) command returns a permutation group isomorphic to the Chevalley group F4q , for q=2. For non-numeric values of the argument q, or for prime powers q larger than 2, a symbolic group representing the group F4q is returned.
withGroupTheory:
G≔ChevalleyF42:
GroupOrderG
3311126603366400
IsSimpleG
true
If the value of the prime power q is too large, or if q is a non-numeric expression, then a symbolic group representing F4q is returned.
G≔ChevalleyF45
G≔F45
2131486317725501953125000000000000000
ClassNumberG
1156
GeneratorsG
Error, (in GroupTheory:-Generators) cannot compute the generators of a symbolic group
G≔ChevalleyF4q
G≔F4q
q24q2−1q6−1q8−1q12−1
MinPermRepDegreeG
q12−1q4+1q−1
The GroupTheory[ChevalleyF4] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
GroupTheory[ChevalleyG2]
GroupTheory[ExceptionalGroup]
Download Help Document