Frobenius
inert Frobenius function
Calling Sequence
Parameters
Description
Examples
References
Frobenius(A)
Frobenius(A, 'P')
A
-
square Matrix
'P'
(optional) assigned the transformation matrix
The Frobenius function is a placeholder for representing the Frobenius form (or Rational Canonical form) of a square matrix. It is used in conjunction with either mod or evala.
The Frobenius function returns the square matrix F which has the following structure: F = diag(C[1], C[2],.., C[k]) where the Ci are companion matrices associated with polynomials p1,p2,..,pk with the property that pi divides pi−1, for i = 2..k.
If called in the form Frobenius(A, 'P'), then P will be assigned the transformation matrix corresponding to the Frobenius form, that is, the matrix P such that inverse(P) * A * P = F.
The call Frobenius(A) mod p computes the Frobenius form of A modulo p which is a prime integer. The entries of A must have rational coefficients or coefficients from an algebraic extension of the integers modulo p.
The call evala(Frobenius(A)) computes the Frobenius form of the square matrix A where the entries of A are algebraic numbers (or functions) defined by RootOfs.
A≔Matrix1+x,1+x2,1+x2,1+x4
A≔1+xx2+1x2+1x4+1
F≔FrobeniusA,Pmod2
F≔0x5+x1x4+x
P
11+x0x2+1
Test the result
mapNormal,InversePmod2·A·P−Fmod2
0000
A1≔Matrix−3−4RootOf_Z2+1x2+1−2RootOf_Z2+1x−5−4RootOf_Z2+1,−4+4RootOf_Z2+1x2+6+3RootOf_Z2+1x−6+2RootOf_Z2+1,2+6RootOf_Z2+1x2+5−3RootOf_Z2+1x+2+2RootOf_Z2+1,−3−5RootOf_Z2+1x2+4+4RootOf_Z2+1x+6+2RootOf_Z2+1:
F1≔evalaFrobeniusA1,P1
F1≔0−43RootOf_Z2+1+21−1168RootOf_Z2+1x3+1145x4+442x2RootOf_Z2+1−2119x3−1482xRootOf_Z2+1+796x2−144RootOf_Z2+1−1726x−62211451−3RootOf_Z2+1+239x2−16x+4+7RootOf_Z2+1+11xRootOf_Z2+113
P1
1−3+4RootOf_Z2+125x2+5x+31−8RootOf_Z2+1+10xRootOf_Z2+12501+3RootOf_Z2+1−9xRootOf_Z2+1+10x2−2RootOf_Z2+1−2x+45
mapevala@Normal,P1−1·A1·P1−F1
Martin, K., and Olazabal, J.M. "An Algorithm to Compute the Change Basis for the Rational Form of K-endomorphisms." Extracta Mathematicae, (August 1991): 142-144.
Ozello, Patrick. "Calcul Exact des Formes de Jordan et de Frobenius d'une Matrice." PhD Thesis, Joseph Fourier University, Grenoble, France, 1987.
See Also
LinearAlgebra[FrobeniusForm]
LinearAlgebra[Modular]
RootOf
Download Help Document