DifferentialGeometry/Tensor/IsotropyType - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/IsotropyType

Tensor[IsotropyType] - find the isotropy type for the infinitesimal isometries of a metric

Calling Sequences

     IsotropyType(Gamma, pt, output)

     IsotropyType(A, output)

     IsotropyType(output)

Parameters

   Gamma  - a list of vectors, the infinitesimal generators for the isometry group of a metric , equivalently, the Killing vectors of

   pt     - a list of equations specifying the equations of a point

   A      - a list of matrices defining a subalgebra of the Lorentz Lie algebra

   output - (optional) the keyword argument output = str, where str is one of "Notation", "Notation1", "Notation2",  "Notation3", "SO31I", "SO31II"

 

Description

Examples

See Also

Description

• 

Let  be a metric on a 4 dimensional manifold  with Lorentzian signature.  The isometry group of  is the Lie group  of transformations  which preserve the metric  under pullback, that is, .  Pick a point .  Then the isotropy subgroup  at  is the subgroup of isometries  which fix the point , that is, .  The Jacobian defines a representation of the isotropy subgroup  as a subgroup of the Lorentz group .  This representation is called the isotropy type of .

• 

The command IsotropyType works at the infinitesimal level.  Let  be the infinitesimal isometry algebra of the metric  and let  be the infinitesimal isotropy subalgebra of  at . ( is the Lie algebra of   Let  be the Lorentz Lie algebra, viewed as a set of linear transformations on .  The mapping  defined by  (where  is the Lie bracket of  and ), is called the infinitesimal linear isotropy representation of . It gives an identification of  with a subalgebra of the Lorentz Lie algebra .

• 

The subalgebras of  have been classified (up to conjugation) by Patera and Winternitz and labeled as F1, F2, ..., F14. (Continuous subgroups of the fundamental groups of physics I. General method and the Poincare group, J. Math Physics, 16 (1975), 1597--1614).  Details of this classification are given in the examples below.

• 

The command IsotropyType(Gamma, p) returns the Patera-Winternitz classification of the isotropy subalgebra .

• 

The command KillingVectors can be used to calculate the infinitesimal isometry algebra  of the metric .

• 

The command IsotropySubalgebra can be used to calculate the infinitesimal isotropy subalgebra  and the linear infinitesimal isotropy representation.

• 

The calling sequence IsotropyType(output = "Notation") returns a short description of the notation used by Patera/Winternitz.  The calling sequence IsotropyType(output = "SO31I") and IsotropyType(output = "SO31II") returns the explicit matrix basis used by Patera/Winternitz for the Lie algebra of the Lorentz group.

• 

This command is part of the DifferentialGeometry:-Tensor package and so can be used in the form IsotropyType(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-IsotropyType.

Examples

 

Example 1.

We begin with two simple examples.  For the first example we use the metric (12.24a) from Stephani, Kramer et al.

 

(2.1)
M > 

(2.2)
M > 

(2.3)
M > 

(2.4)
M > 

(2.5)

 

Example 2.

For our second example we use the metric (12.16) from Stephani, Kramer et al.

M > 

(2.6)
M > 

(2.7)
M > 

(2.8)
M > 

(2.9)

 

Example 3.

In this example we explore some of the details regarding the classification of the subalgebras of the Lorentz algebra .  With output = "SO31I" we obtain the standard basis for  consisting of 3 rotations  and 3 boosts .

M > 

 

With output = "SO31II" we obtain an alternative basis which is useful for listing the subalgebras.

M > 

 

With output = "Notation" the relationship between these two basis is shown and the list of subalgebras of , as given in the aforementioned paper of Patera and Winternitz, is listed:

M > 

B1 = 2Rz, B2 = -2Kz, B3 = -Ry - Kz, B4 = Rx - Ky, B5 = Ry - Kx, B6 = Rx + Ky, B(theta) = cos(theta) Rz - sin(theta)Kz
F1: {B1, B2, B3, B4, B5, B6}
F2: {B1, B2, B3, B4}
F3: {Rx, Ry, Rz}
F4: {Rz, Kx, Ky}
F5: {B(theta),B3, B4}
F6: {B1, B3, B4}
F7: {B2, B3, B4}
F8: {B2 ,B3}
F9: {B1, B2}
F10: {B3, B4}
F11: {B(theta)})
F12: {Rz}
F13: {Kz}
F14: {Ry + Kz}
F15: {0}

 

As a simple consistency check on the IsotropyType program, let us pass to the program one of the matrix algebras from this list.

M > 

(2.10)

 

This classification result is independent of the basis used to define the isotropy algebra:

M > 

(2.11)

 

This classification is independent of the basis used for the tangent space:

M > 

M > 

M > 

(2.12)

 

Example 4

With infolevel[IsotropyType] := 2, the branching in the program can be followed.

M > 

(2.13)
M > 

(2.14)
M > 

(2.15)
M > 

(2.16)
M > 

Isotropy subalgebra has dimension 3

If isotropy subalgebra is 3 dimensional simple, then isotropy type is determined by the signature of the Killing form:
   Matrix(3, 3, [[-3/2,1/4,0],[1/4,1/8,0],[0,0,2]])
   If Killing form is negative-definite,  then isotropy type is "F3"
   If Killing form is indefinite,  then isotropy type is "F4"
   The command IsDefinite(h, 'query' = 'positive_definite') returns: false
   The command IsDefinite(h, 'query' = 'indefinite') returns: true

(2.17)

See Also

DifferentialGeometry, Tensor, LieAlgebras, IsotropySubalgebra


Download Help Document