Query[Ideal] - check if a subalgebra defines an ideal in a Lie algebra
Calling Sequences
Query(S, "Ideal")
Query(S, parm, "Ideal")
Parameters
S - a list of independent vectors which defines a basis for subalgebra in a Lie algebra
parm - (optional) a set of parameters appearing in the list of vectors S; it is assumed that the set of vectors S is well-defined when the parameters vanish
Description
Examples
A list of vectors in a Lie algebra is a basis for an ideal in if span(for all and .
Query(S, "Ideal") returns true if the subalgebra S defines an ideal and false otherwise.
Query(S, parm, "Ideal") returns a sequence TF, Eq, Soln, IdealList. Here TF is true if Maple finds parameter values for which S is an ideal and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for S to be an ideal; Soln is the list of solutions to the equations Eq; and IdealList is the list of ideals obtained from the parameter values given by the different solutions in Soln.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Example 1.
First initialize a Lie algebra; then define some subalgebras and check to see if they are ideals.
The subalgebra depends on a parameter . We find which parameter values make an ideal.
The following equations must hold for to be an ideal (each expression must vanish).
See Also
DifferentialGeometry
LieAlgebras
Query
Download Help Document