DifferentialGeometry/LieAlgebras/Query/Ideal - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/Ideal

Query[Ideal] - check if a subalgebra defines an ideal in a Lie algebra

Calling Sequences

     Query(S, "Ideal")

     Query(S, parm, "Ideal")

Parameters

     S       -  a list of independent vectors which defines a basis for subalgebra in a Lie algebra

     parm    - (optional) a set of parameters appearing in the list of vectors S; it is assumed that the set of vectors S is well-defined when the parameters vanish

 

Description 

Examples

Description 

• 

 A list of vectors  in a Lie algebra is a basis for an ideal in  if span(for all and .

• 

Query(S, "Ideal") returns true if the subalgebra S defines an ideal and false otherwise.

• 

Query(S, parm, "Ideal") returns a sequence TF, Eq, Soln, IdealList.  Here TF is true if Maple finds parameter values for which S is an ideal and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for S to be an ideal; Soln is the list of solutions to the equations Eq; and IdealList is the list of ideals obtained from the parameter values given by the different solutions in Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

 

Example 1.

First initialize a Lie algebra; then define some subalgebras  and check to see if they are ideals.

Alg > 

(2.1)
Alg > 

Alg > 

(2.2)
Alg > 

(2.3)
Alg > 

(2.4)
Alg > 

(2.5)

 

The subalgebra depends on a parameter .  We find which parameter values make  an ideal.

Alg > 

Alg > 

(2.6)

 

The following equations must hold for to be an ideal (each expression must vanish).

Alg > 

(2.7)
Alg > 

(2.8)
Alg > 

(2.9)

See Also

DifferentialGeometry

LieAlgebras

Query

 


Download Help Document