DirectSumDecomposition - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Query[DirectSumDecomposition] - check if a list of subalgebras defines a direct sum decomposition of a Lie algebra

Calling Sequences

     Query([S1, S2, ...], "DirectSumDecomposition")

     Query(B, [d1, d2, ...], "DirectSumDecomposition")

Parameters

     S1        - a list of independent vectors defining a subalgebra of a Lie algebra 𝔤   

     B         - a list of vectors defining a basis for 𝔤

     d1        - a sequence of positive integers whose sum equals the dimension of the Lie algebra 𝔤

 

Description

Examples

Description

• 

A collection of subalgebras S1, S2 ... of a Lie algebra 𝔤 define a direct sum decomposition of 𝔤  if  𝔤 = S1S2  (vector space direct sum) and  Si, Sj =0 for i j.

• 

Query([S1, S2, ... ], "DirectSumDecomposition") returns true if the subspaces  S1, S2, ...  define a direct sum decomposition of the Lie algebra 𝔤 and false otherwise

• 

Query(B, [d1, d2, ... ], "DirectSumDecomposition") returns true if the first d1vectors in B, the second d2 vectors in B, ... define a direct sum decomposition of 𝔤 and false otherwise.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.  One can see from the multiplication table that this Lie algebra is a direct sum of the subalgebras S1= spane1, e2, e3, S2=span{e4,e5} and S3 =span{ e6}. We verify this using Query.

L1_DGLieAlgebra,Alg1,6,1,3,1,1,2,3,2,1,4,5,4,1:

DGsetupL1:

Alg1 > 

MultiplicationTableLieBracket

e1,e3=e1,e2,e3=e2,e4,e5=e4

(2.1)
Alg1 > 

S1e1,e2,e3:S2e4,e5:S3e6:

Alg1 > 

QueryS1,S2,S3,DirectSumDecomposition

true

(2.2)
Alg1 > 

QueryS1,S2,DirectSumDecomposition

false

(2.3)

 

Define B to be a basis for the Lie algebra which is adapted to the direct sum decomposition. Use the second calling sequence to check for a direct sum decomposition.

Alg1 > 

Be1,e2,e3,e4,e5,e6:

Alg1 > 

QueryB,3,3,DirectSumDecomposition

true

(2.4)
Alg1 > 

QueryB,2,2,2,DirectSumDecomposition

false

(2.5)

See Also

DifferentialGeometry

LieAlgebras

Decompose

Query

MultiplicationTable