CartanSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[CartanSubalgebra] - find a Cartan subalgebra of a Lie algebra

Calling Sequences

     CartanSubalgebra()

     CartanSubalgebra(alg)

     CartanSubalgebra(N)

Parameters

     alg   - name or string, the name of an initialized Lie algebra

  N     - a list of vectors, defining a nilpotent subalgebra

   

 

Description

Examples

Description

• 

 Let 𝔤 be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is, nor𝔥 = 𝔥 . If g is a semi-simple Lie algebra, then every Cartan subalgebra h is Abelian and adx (see Adjoint) is a semi-simple linear transformation for every x 𝔥 (that is, adx is diagonalizable over C). Cartan subalgebras are not unique. However, if g is a semi-simple Lie algebra, then any two Cartan subalgebras of g are related by an automorphism of g Let n be a nilpotent subalgebra of g and let F𝔫 ={y 𝔤 | adxry =0} be the generalized null space of n. Then there always exists a Cartan subalgebra 𝔥 F𝔫. If x 𝔤 is a regular element, then the generalized null space of x is a Cartan subalgebra.

• 

The procedure CartanSubalgebra returns a list of vectors whose span is a Cartan subalgebra.

• 

The procedure CartanSubalgebra implements the algorithm for calculating Cartan subalgebras presented in W. A. De Graaf: Lie Algebras: Theory and Algorithms.

Examples

 

withDifferentialGeometry:withLieAlgebras:withLibrary:

 

Example 1

We calculate the Cartan subalgebra for sl3, the 8-dimensional Lie algebra of 3x3 trace-free matrices. The structure equations are obtained using the SimpleLieAlgebraData command.

LSimpleLieAlgebraDatasl(3),sl3,labelformat=gl,labels=E,θ

L:=e1,e3=e3,e1,e4=2e4,e1,e5=e5,e1,e6=e6,e1,e7=2e7,e1,e8=e8,e2,e3=e3,e2,e4=e4,e2,e5=e5,e2,e6=2e6,e2,e7=e7,e2,e8=2e8,e3,e5=e1e2,e3,e6=e4,e3,e7=e8,e4,e5=e6,e4,e7=e1,e4,e8=e3,e5,e8=e7,e6,e7=e5,e6,e8=e2,E11,E22,E12,E13,E21,E23,E31,E32,θ11,θ22,θ12,θ13,θ21,θ23,θ31,θ32

(2.1)

 

Initialized the Lie algebra.

DGsetupL

Lie algebra: sl3

(2.2)

 

Find a Cartan subalgebra.

sl(3) > 

CSACartanSubalgebra

CSA:=E11,E22

(2.3)

 

We can check that this subalgebra is Abelian (and hence nilpotent) and self-normalizing.

sl3 > 

QueryCSA,Abelian

true

(2.4)
sl3 > 

SubalgebraNormalizerCSA

E22,E11

(2.5)

 

These properties can also be checked with the Query command

sl3 > 

QueryCSA,CartanSubalgebra

true

(2.6)

 

For the split real forms of the simple Lie algebras, a Cartan subalgebra can always be found consisting of diagonal matrices in the standard representation.

sl3 > 

StandardRepresentationsl3,CSA

 

Example 2

Other Cartan subalgebras for sl4 can be found with the second calling sequence.

sl3 > 

CartanSubalgebraE11+3E31

E11+3E31,E22+32E31

(2.7)

 

Example 3

The Cartan subalgebra of a nilpotent Lie algebra g is g itself. Retrieve the structure equations for a nilpotent Lie algebra from the DifferentialGeometry library.

sl3 > 

LD3RetrieveWinternitz,1,5,5,alg3

LD3:=e2,e5=e1,e3,e4=e1,e3,e5=e2

(2.8)
sl3 > 

DGsetupLD3:

 

Check that the algebra is nilpotent.

alg3 > 

QueryNilpotent

true

(2.9)
alg3 > 

CartanSubalgebra

e1,e2,e3,e4,e5

(2.10)

 

Example 4

We find the Cartan subalgebra for a solvable Lie algebra. Retrieve the structure equations for a solvable Lie algebra from the DifferentialGeometry library.

alg3 > 

LD4RetrieveWinternitz,1,5,34,alg4

LD4:=e1,e4=ae1,e1,e5=e1,e2,e4=e2,e3,e4=e3,e3,e5=e2

(2.11)
alg4 > 

DGsetupLD4

Lie algebra: alg4

(2.12)

 

Check that the algebra is solvable.

alg4 > 

QuerySolvable

true

(2.13)
alg4 > 

CSA4CartanSubalgebra

CSA4:=e4,e5

(2.14)
alg4 > 

QueryCSA4,CartanSubalgebra

true

(2.15)

 

Example 5.

We find the Cartan subalgebra for a Lie algebra with a non-trivial Levi decomposition. Retrieve the structure equations for such a Lie algebra from the DifferentialGeometry library.

alg4 > 

LD5RetrieveTurkowski,1,7,4,alg5

LD5:=e1,e2=2e2,e1,e3=2e3,e1,e4=e4,e1,e5=e5,e2,e3=e1,e2,e5=e4,e3,e4=e5,e4,e5=e6,e4,e7=e4,e5,e7=e5,e6,e7=2e6

(2.16)
alg4 > 

DGsetupLD5

Lie algebra: alg5

(2.17)

 

Check that the Levi decomposition is non-trivial.

alg5 > 

LeviDecomposition

e4,e5,e6,e7,e1,e2,e3

(2.18)

 

Calculate the Cartan subalgebra.

alg5 > 

CartanSubalgebraalg5

e1,e7

(2.19)

See Also

DifferentialGeometry

LieAlgebras

CartanMatrix

Query

RootSpaceDecomposition