DGconjugate - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DifferentialGeometry[DGconjugate] - find the complex conjugate of a vector, tensor or differential form; find the conjugate of a quaternion or octonion

DifferentialGeometry[DGRe] - find the real part of a vector, tensor or differential form; find the real part of a quaternion or octonion

DifferentialGeometry[DGIm] - find the  imaginary part of a vector, a tensor or differential form; find the imaginary part of a quaternion or octonion

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

 DGconjugate(T, option)

 DGconjugate(X)

 DGRe(T, option)

 DGRe(X)

 DGIm(T, option)

 DGIm(X)

Parameters

T

-

a tensor, differential form or vector defined on a manifold with complex coordinates

X

-

a quaternion or octonion

option

-

the keyword argument complexconjugatepairs = [[a1, a2], [b1, b2], ...] where [a1, a2], ... are Maple expressions (appearing the coefficients of T) which are to be interchanged under conjugation

Description

• 

 The calling sequences DGconjugate(T, option), DGRe(T, option), DGIm(T, option) compute the complex conjugate, real part, and imaginary part of a tensor or differential form T. The coordinate variables are assumed to be real unless explicitly declared to be complex by using the keyword argument complexconjugatepairs as part of the calling sequence to DGsetup.

• 

The calling sequences DGconjugate(X), DGRe(X), DGIm(X) compute the complex conjugate, real part, and imaginary part of a quaternion or octonion X.

Examples

 

Example 1.

Define a 4-dimensional manifold with coordinates , where  and  are real coordinates, andare complex coordinates and the complex conjugate of is

 

(4.1)

 

Calculate the complex conjugate of some vectors on .

M > 

(4.2)
M > 

(4.3)
M > 

(4.4)
M > 

(4.5)

 

Calculate the complex conjugate of a vector depending upon parameters  and . First assume and are real.

M > 

(4.6)
M > 

(4.7)

 

Now suppose that is complex and that the complex conjugate of is .

M > 

(4.8)

 

Calculate the complex conjugate of a rank 2 tensor:

M > 

(4.9)
M > 

(4.10)

 

Calculate the complex conjugate of a rank 4 differential form

M > 

(4.11)
M > 

(4.12)

 

Example 2.

Calculate the real and imaginary parts of the vectors, tensors and differential forms defined in Example 1.

 

M > 

(4.13)
M > 

(4.14)
M > 

(4.15)
M > 

(4.16)
M > 

(4.17)
M > 

(4.18)

 

Example 3.

The command DGconjugate works with anholonomic frames. To check this, first define an anholonomic frame and initialize it..

 

alg > 

(4.19)
M > 

(4.20)
M > 

(4.21)

 

Example 4.

Find the conjugate of a quaternion. First use the command AlgebraData to obtain the structure equations for the quaternions.

(4.22)

 

The labels for the vectors and dual 1-forms can be specified upon initialization of the algebra. We will use the standard for the quaternion basis vectors, and for the dual 1-forms.

 

(4.23)
alg > 

 

Define a quaternion.

M > 

(4.24)
alg > 

(4.25)

 

Example 5.

Find the conjugate of an octonian. Use the command AlgebraData to obtain the structure equations for the octonions.

(4.26)
alg > 

(4.27)

 

Define an octonion.

(4.28)
alg > 

(4.29)

 

See Also

DifferentialGeometry

LieAlgebras

AlgebraData

AlgebraInverse

AlgebraNorm

 


Download Help Document