 Permanent Magnet Losses - MapleSim Help

Permanent Magnet Losses

Model of permanent magnet losses dependent on current and speed Description Permanent magnet losses are modeled as dependent on stator current and shaft speed. The losses are generated by applying a braking torque to the shaft. To neglect permanent magnet losses, set ${P}_{\mathrm{ref}}$ to zero (this is the default). Equations $\mathrm{\tau }={\mathrm{\tau }}_{s}=-{\mathrm{\tau }}_{f}=-{\mathrm{\tau }}_{\mathrm{ref}}\left(c+\left(1-c\right){\left(\frac{{i}_{\mathrm{rms}}}{{I}_{\mathrm{ref}}}\right)}^{{p}_{I}}\right)\left\{\begin{array}{cc}+{\left(\frac{\mathrm{\omega }}{{\mathrm{\omega }}_{\mathrm{ref}}}\right)}^{{p}_{\mathrm{\omega }}}& 0\le \mathrm{\omega }\\ -{\left(-\frac{\mathrm{\omega }}{{\mathrm{\omega }}_{\mathrm{ref}}}\right)}^{{p}_{\mathrm{\omega }}}& \mathrm{otherwise}\end{array}$ ${\mathrm{\tau }}_{\mathrm{ref}}=\frac{{P}_{\mathrm{ref}}}{{\mathrm{\omega }}_{\mathrm{ref}}}$ $\mathrm{\phi }={\mathrm{\phi }}_{f}-{\mathrm{\phi }}_{s}$ $\mathrm{\omega }=\frac{d\phi }{\mathrm{dt}}$ $\mathrm{lossPower}=-\mathrm{\tau }\mathrm{\omega }$ ${i}_{\mathrm{rms}}=\sqrt{\sum _{k=1}^{3}{i}_{{s}_{k}}^{2}}$ Variables

 Name Units Description Modelica ID ${i}_{\mathrm{rms}}$ $A$ Quasi RMS value of stator current iRMS ${i}_{s}$ $A$ Instantaneous stator currents is $\mathrm{lossPower}$ $W$ Loss power leaving component via heat port lossPower $\mathrm{\omega }$ $\frac{\mathrm{rad}}{s}$ Relative angular velocity of flange and support w $\mathrm{\phi }$ $\mathrm{rad}$ Angle between shaft and support phi $\mathrm{\tau }$ $Nm$ Torque tau ${\mathrm{\tau }}_{f}$ $Nm$ Torque at flange flange.tau ${\mathrm{\tau }}_{s}$ $Nm$ Torque at support support.tau Connections

 Name Description Modelica ID $\mathrm{flange}$ Shaft end flange $\mathrm{Heat Port}$ heatPort ${i}_{s}$ Three phase stator current is $\mathrm{support}$ Housing and support support Parameters

 Name Default Units Description Modelica ID ${\omega }_{\mathrm{ref}}$ $\frac{\mathrm{rad}}{s}$ Reference angular velocity wRef $c$ $0$ Part of magnet losses at zero current, independent of current c ${I}_{\mathrm{ref}}$ $A$ Reference stator RMS current IRef ${p}_{\omega }$ $1$ Exponent of magnet loss torque w.r.t. angular velocity power_w ${p}_{I}$ $2$ Exponent of magnet loss torque w.r.t. stator current power_I ${P}_{\mathrm{ref}}$ $0$ $W$ Reference magnet losses at ${i}_{\mathrm{rms}}={I}_{\mathrm{ref}}$ and $\mathrm{\omega }={\mathrm{\omega }}_{\mathrm{ref}}$ PRef Use Heat Port $\mathrm{false}$ True (checked) enables the heat port useHeatPort Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.