Resistor

Ideal linear electrical resistor

 Description The Resistor component models a constant, linear electrical resistor with an optional heat port and temperature dependency. The resistance is allowed to be positive, zero, or negative.
 Equations $i={i}_{p}=-{i}_{n}$ $v={v}_{p}-{v}_{n}={R}_{\mathrm{actual}}i$ ${R}_{\mathrm{actual}}=R\left(1+\mathrm{\alpha }\left({T}_{\mathrm{res}}-{T}_{\mathrm{ref}}\right)\right)$ ${T}_{\mathrm{res}}=\left\{\begin{array}{cc}{T}_{\mathrm{heatPort}}& \mathrm{Use Heat Port}\\ T& \mathrm{otherwise}\end{array}$ $\mathrm{LossPower}=vi$

Variables

 Name Units Description Modelica ID $v$ $V$ Voltage drop across the resistor v ${v}_{x}$ $V$ Voltage at pin $x$, $x\in \left\{n,p\right\}$ x.v $i$ $A$ Current flowing from pin $p$ to pin $n$ i ${i}_{x}$ $A$ Current into pin $x$, $x\in \left\{n,p\right\}$ x.i $\mathrm{LossPower}$ $W$ Loss power leaving component via HeatPort LossPower ${T}_{\mathrm{heatPort}}$ $K$ Temperature of HeatPort T_heatPort ${R}_{\mathrm{actual}}$ $\mathrm{\Omega }$ Actual resistance R_actual

Connections

 Name Description Modelica ID $p$ Positive pin p $n$ Negative pin n $\mathrm{Heat Port}$ heatPort

Parameters

 Name Default Units Description Modelica ID $R$ $1$ $\mathrm{\Omega }$ Resistance R $T$ ${T}_{\mathrm{ref}}$ $K$ Fixed device temperature if Use Heat Port is false T ${T}_{\mathrm{ref}}$ $300.15$ $K$ Reference temperature T_ref $\mathrm{\alpha }$ $0$ $\frac{1}{K}$ Temperature coefficient of resistance alpha Use Heat Port $\mathrm{false}$ True (checked) means heat port is enabled useHeatPort

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.