SignalProcessing/ResponseSpectrum - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : SignalProcessing/ResponseSpectrum

SignalProcessing

  

ResponseSpectrum

  

plot the response spectrum of a signal

 

Calling Sequence

Parameters

Options

Description

Examples

References

Compatibility

Calling Sequence

ResponseSpectrum(data, timeStep, dT, maxT)

ResponseSpectrum(dataT, dataA, timeStep, dT, maxT)

Parameters

data

-

rtable(numeric) : 2-D rtable where column 1 is time and column 2 is acceleration for the time-acceleration history

dataT, dataA

-

rtable(numeric) : 1-D rtables containing, respectively, the time and acceleration for the time-acceleration history

timeStep

-

numeric : positive time step of input time-acceleration data and output velocity/displacement-time history

dT

-

numeric : positive time step of period in output spectrum

maxT

-

numeric : positive maximum period in output spectrum

Options

• 

zeta : numeric : Non-negative damping ratio, with default 0.05.

• 

beta : numeric : First non-negative constant which determines the discretization scheme for the equation of motion, with default 0.25.

• 

gamma : numeric : Second non-negative constant which determines the discretization scheme for the equation of motion, with default 0.5.

• 

periodfrequency : identical(period, frequency) : One of the names period (default) or frequency.

• 

xscale : identical(log, linear) : One of the names log or linear (default).

• 

yscale : identical(log, linear) : One of the names log or linear (default).

• 

output : The type of output. The supported options are:

– 

absoluteaccelerationdata: Vector, of datatype float[8], containing the absolute acceleration data.

– 

absoluteaccelerationplot: Plot of the absolute acceleration versus period.

– 

accelerationdata: Vector, of datatype float[8], containing the acceleration data.

– 

accelerationplot: Plot of the acceleration versus time.

– 

displacementdata: Vector, of datatype float[8], containing the displacement data.

– 

displacementplot: Plot of the displacement versus time.

– 

perioddata: Vector, of datatype float[8], containing the period data.

– 

pseudoaccelerationdata: Vector, of datatype float[8], containing the pseudospectral acceleration data.

– 

pseudoaccelerationplot: Plot of the pseudospectral acceleration versus period.

– 

pseudovelocitydata: Vector, of datatype float[8], containing the pseudospectral velocity data.

– 

pseudovelocityplot: Plot of the pseudospectral velocity versus period.

– 

relativedisplacementdata: Vector, of datatype float[8], containing the relative displacement response spectrum data.

– 

relativedisplacementplot: Plot of the relative displacement response spectrum versus period.

– 

relativevelocitydata: Vector, of datatype float[8], containing the relative velocity response spectrum data.

– 

relativevelocityplot: Plot of the relative velocity response spectrum versus period.

– 

timedata: float[8] Vector of the time data.

– 

velocitydata: Vector, of datatype float[8], containing the velocity data.

– 

velocityplot: Plot of the velocity versus time.

– 

record: Returns a record with the previous options. This is the default.

– 

list of any of the above options: Returns an expression sequence with the corresponding outputs, in the same order.

Description

• 

A response spectrum is a plot of how a structure or system responds to varying frequencies of ground motion or input excitation. It is commonly used in structural engineering and earthquake engineering to assess the potential response of a structure to seismic events.

• 

A response spectrum is generated by calculating the maximum response of a structure to different frequencies of ground motion. An acceleration time history is used to perturb a single degree of freedom harmonic oscillator. Typically period is plotted on the x-axis against acceleration, velocity or position on the y-axis.

• 

This procedure computes the response spectrum of an input accelerogram (time-acceleration history). It numerically solves the differential equation for a harmonic oscillator with one degree of freedom.

• 

The parameters β, γ, and ζ are the same as those described in the Newmark-beta Method.

Examples

withSignalProcessing:

datafileFileTools:-JoinPathkerneloptsdatadir,datasets,el-centro_NS.txt:

dataImportMatrixdatafile,delimiter= :

resultsResponseSpectrumdata,0.02,0.01,5,ζ=0.02,β=0.25,γ=0.5:

The primary content of the record returned by ResponseSpectrum are a number of charts:

results:-absoluteaccelerationplot

results:-relativevelocityplot

results:-relativedisplacementplot

results:-pseudovelocityplot

results:-pseudoaccelerationplot

results:-displacementplot

results:-velocityplot

results:-accelerationplot

Additional raw data used to generate these plots are available in other slots of the record.

results:-perioddata

results:-absoluteaccelerationdata

results:-relativevelocitydata

results:-relativedisplacementdata

results:-pseudovelocitydata

results:-pseudoaccelerationdata

results:-velocitydata

results:-displacementdata

References

  

Aeran, Ashish and Hirpa G. Lemu. "Time Integration Schemes in Dynamic Problems: Effect of Damping on Numerical Stability and Accuracy". International Workshop of Advanced Manufacturing and Automation (IWAMA), pp. 213-220. Atlantis Press, 2016.

  

"Newmark-beta Method", Wikipedia. https://en.wikipedia.org/wiki/Newmark-beta_method

  

"Response Spectrum", Wikipedia. https://en.wikipedia.org/wiki/Response_spectrum

Compatibility

• 

The SignalProcessing[ResponseSpectrum] command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.

See Also

SignalProcessing