iztrans - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

# Online Help

###### All Products    Maple    MapleSim

MTM

 iztrans
 inverse Z transform

 Calling Sequence iztrans(M) iztrans(M,n) iztrans(M,z,n)

Parameters

 M - array or expression n - variable z - variable

Description

 • The iztrans(M) function computes the element-wise inverse Z transform of M.  The result, R, is formed as R[i,j] = iztrans(M[i,j], t, s).
 • f = iztrans(F) is the inverse Z transform of the scalar F with the default independent variable z.  If F is not a function of z, then F is  assumed to be a function of the independent variable returned by findsym(F,1). The default return is a function of n.
 • If F = F(n), then iztrans returns a function of k.
 • iztrans(F,k) makes F a function of the variable k instead of the default n.
 • iztrans(F,w,k) takes F to be a function of w instead of the default z. The summation is then with respect to k.

Examples

 > $\mathrm{with}\left(\mathrm{MTM}\right):$
 > $\mathrm{iztrans}\left(\frac{z}{z-2}\right)$
 ${{2}}^{{n}}$ (1)
 > $\mathrm{iztrans}\left(\frac{n}{n-2}\right)$
 ${{2}}^{{k}}$ (2)
 > $\mathrm{iztrans}\left(\frac{z}{z-2},s\right)$
 ${{2}}^{{s}}$ (3)
 > $\mathrm{iztrans}\left(\frac{tz}{z-t\cdot 2},t,s\right)$
 ${-}\frac{{\left(\frac{{1}}{{2}}\right)}^{{s}}{}{{z}}^{{s}}{}{z}}{{2}}$ (4)
 > $M≔\mathrm{Matrix}\left(\left[\frac{z}{z-2},\frac{tz}{z-t\cdot 2}\right]\right):$
 > $\mathrm{iztrans}\left(M\right)$
 $\left[\begin{array}{cc}{{2}}^{{n}}& {{2}}^{{n}}{}{{t}}^{{n}}{}{t}\end{array}\right]$ (5)

 See Also