 KillingOrthogonal - Maple Help

KillingOrthogonal

find the subspace of a LAVF object L that is orthogonal to another LAVF w.r.t. the Killing form of L Calling Sequence KillingOrthogonal(L, M) Parameters

 L, M - LAVF objects in which M is subspace of L (see IsSubspace). Description

 • Let L, M be LAVF objects and $M\subseteq L$. Then KillingOrthogonal(L,M) finds a new LAVF object for the subspace of L that is orthogonal to M with respect to the Killing form of L.
 • Let M be a subspace of L. The Killing orthogonal of M in L is the subspace $\left\{{X}_{L}\in L\phantom{\rule[-0.0ex]{1.5ex}{0.0ex}}|\phantom{\rule[-0.0ex]{1.0ex}{0.0ex}}K\left({X}_{M},{X}_{L}\right)=0\phantom{\rule[-0.0ex]{1.0ex}{0.0ex}}\mathbf{for}\mathrm{all}\phantom{\rule[-0.0ex]{1.0ex}{0.0ex}}{X}_{M}\phantom{\rule[-0.0ex]{0.5ex}{0.0ex}}\in \phantom{\rule[-0.0ex]{0.5ex}{0.0ex}}M\right\}$ where K( , ) is the Killing form of L.
 • Some LAVF's exported methods are instance of this method, for example, KillingOrthogonal(L,L) gives KillingRadical of L, and KillingOrthogonal(L, DerivedAlgebra(L)) gives SolvableRadical of L.
 • This method is associated with the LAVF object. For more detail, see Overview of the LAVF object. Examples

 > $\mathrm{with}\left(\mathrm{LieAlgebrasOfVectorFields}\right):$
 > $\mathrm{Typesetting}:-\mathrm{Settings}\left(\mathrm{userep}=\mathrm{true}\right):$
 > $\mathrm{Typesetting}:-\mathrm{Suppress}\left(\left[\mathrm{\xi }\left(x,y\right),\mathrm{\eta }\left(x,y\right)\right]\right):$
 > $V≔\mathrm{VectorField}\left(\mathrm{\xi }\left(x,y\right)\mathrm{D}\left[x\right]+\mathrm{\eta }\left(x,y\right)\mathrm{D}\left[y\right],\mathrm{space}=\left[x,y\right]\right)$
 ${V}{≔}{\mathrm{\xi }}{}\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{+}{\mathrm{\eta }}{}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}$ (1)
 > $\mathrm{E2}≔\mathrm{LHPDE}\left(\left[\mathrm{diff}\left(\mathrm{\xi }\left(x,y\right),y,y\right)=0,\mathrm{diff}\left(\mathrm{\eta }\left(x,y\right),x\right)=-\mathrm{diff}\left(\mathrm{\xi }\left(x,y\right),y\right),\mathrm{diff}\left(\mathrm{\eta }\left(x,y\right),y\right)=0,\mathrm{diff}\left(\mathrm{\xi }\left(x,y\right),x\right)=0\right],\mathrm{indep}=\left[x,y\right],\mathrm{dep}=\left[\mathrm{\xi },\mathrm{\eta }\right]\right)$
 ${\mathrm{E2}}{≔}\left[{{\mathrm{\xi }}}_{{y}{,}{y}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{-}{{\mathrm{\xi }}}_{{y}}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}{,}{{\mathrm{\xi }}}_{{x}}{=}{0}\right]{,}{\mathrm{indep}}{=}\left[{x}{,}{y}\right]{,}{\mathrm{dep}}{=}\left[{\mathrm{\xi }}{,}{\mathrm{\eta }}\right]$ (2)

Construct a LAVF for E(2).

 > $L≔\mathrm{LAVF}\left(V,\mathrm{E2}\right)$
 ${L}{≔}\left[{\mathrm{\xi }}{}\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{+}{\mathrm{\eta }}{}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{y}{,}{y}}{=}{0}{,}{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{-}{{\mathrm{\xi }}}_{{y}}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (3)
 > $\mathrm{IsLieAlgebra}\left(L\right)$
 ${\mathrm{true}}$ (4)
 > $\mathrm{KillingOrthogonal}\left(L,L\right)$
 $\left[{\mathrm{\xi }}{}\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{+}{\mathrm{\eta }}{}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{0}{,}{{\mathrm{\xi }}}_{{y}}{=}{0}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (5)

The Killing orthogonal in L to its derived algebra is the solvable radical of L.

 > $\mathrm{DL}≔\mathrm{DerivedAlgebra}\left(L\right)$
 ${\mathrm{DL}}{≔}\left[{\mathrm{\xi }}{}\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{+}{\mathrm{\eta }}{}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{0}{,}{{\mathrm{\xi }}}_{{y}}{=}{0}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (6)
 > $\mathrm{KO}≔\mathrm{KillingOrthogonal}\left(L,\mathrm{DL}\right)$
 ${\mathrm{KO}}{≔}\left[{\mathrm{\xi }}{}\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{+}{\mathrm{\eta }}{}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{y}{,}{y}}{=}{0}{,}{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{-}{{\mathrm{\xi }}}_{{y}}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (7)
 > $\mathrm{SR}≔\mathrm{SolvableRadical}\left(L\right)$
 ${\mathrm{SR}}{≔}\left[{\mathrm{\xi }}{}\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{+}{\mathrm{\eta }}{}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{y}{,}{y}}{=}{0}{,}{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{-}{{\mathrm{\xi }}}_{{y}}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (8)
 > $\mathrm{AreSame}\left(\mathrm{KO},\mathrm{SR}\right)$
 ${\mathrm{true}}$ (9) Compatibility

 • The KillingOrthogonal command was introduced in Maple 2020.