ProjectiveCurvatureTensor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : Tensor : ProjectiveCurvatureTensor

Tensor[ProjectiveCurvatureTensor] - calculate the Weyl projective curvature tensor of a connection on the tangent bundle

 

Calling Sequences

     ProjectiveCurvature(g)

     ProjectiveCurvature(C)

     ProjectiveCurvature(R)

Parameters

     g       - the metric tensor on the tangent bundle of a manifold

     C       - a connection on the tangent bundle of a manifold

     R       - the curvature tensor of a connection on the tangent bundle of a manifold

 

Description

Examples

Description

• 

Let  be a connection on the tangent bundle of a manifold  of dimension Let the curvature tensor of  be  and the Ricci tensor of  be . The Weyl projective curvature of  is the tensor  of type  given by

• 

With the first calling sequence the projective curvature tensor of the Christoffel connection of the metric g is computed. With the second calling sequence, the projective curvature tensor is computed directly from the given connection.  With the third calling sequence, the projective curvature tensor is computed directly from the given curvature tensor.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form ProjectiveCurvature(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-ProjectiveCurvature.

Examples

 

Example 1.

Compute the projective curvature of a metric.

 

(2.1)
P > 

(2.2)
P > 

(2.3)

 

Example 2.

Compute the projective curvature of a connection.

 

(2.4)
P > 

(2.5)
P > 

(2.6)

 

Example 3.

Compute the projective curvature from a given curvature tensor.

 

(2.7)
M > 

(2.8)
M > 

M > 

(2.9)

 

See Also

DifferentialGeometry

CurvatureTensor

RicciTensor

 


Download Help Document