 sqrt - Maple Help

type/sqrt

check for a square root Calling Sequence type(expr, sqrt) type(expr, 'sqrt'(domain)) Parameters

 expr - any expression domain - any valid type domain Description

 • An expression is of type sqrt if it is a radical and the exponent has a denominator of 2.
 • An expression is of type sqrt(domain) if it is of type radext(domain) and the exponent has a denominator of 2.
 • Note that a square root of a product or quotient is not of type sqrt because it evaluates to a product or quotient of square roots.
 • When used in the second form, it is necessary to enclose sqrt in forward (unevaluation) quotes to prevent the sqrt function from being invoked. Examples

 > $\mathrm{type}\left({5}^{\frac{1}{2}},'\mathrm{sqrt}'\right)$
 ${\mathrm{true}}$ (1)
 > $\mathrm{type}\left({5}^{\frac{1}{2}},'\mathrm{sqrt}'\left(\mathrm{integer}\right)\right)$
 ${\mathrm{true}}$ (2)
 > $\mathrm{type}\left({y}^{\frac{1}{2}},'\mathrm{sqrt}'\left(\mathrm{name}\right)\right)$
 ${\mathrm{true}}$ (3)
 > $\mathrm{type}\left({5}^{\frac{1}{4}},\mathrm{sqrt}\right)$
 ${\mathrm{false}}$ (4)
 > $\mathrm{type}\left({\left(x+7\right)}^{\frac{3}{2}},'\mathrm{sqrt}'\left(\mathrm{integer}\right)\right)$
 ${\mathrm{false}}$ (5)
 > $\mathrm{type}\left({\left(x+7\right)}^{\frac{3}{2}},'\mathrm{sqrt}'\left(\mathrm{polynom}\right)\right)$
 ${\mathrm{true}}$ (6)