Quotient - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

# Online Help

###### All Products    Maple    MapleSim

SNAP

 Quotient
 compute the quotient of polynomial division
 Remainder
 compute the remainder of polynomial division

 Calling Sequence Quotient(a, b, x, 'r') Remainder(a, b, x, 'q')

Parameters

 a, b - univariate numeric polynomials in x x - name; indeterminate for a and b 'r', 'q' - (optional) unevaluated names; assigned remainder and quotient, respectively

Description

 • The Quotient command returns the numeric quotient of a divided by b.
 • The Remainder command returns the numeric remainder of a divided by b.
 • The numeric remainder r and numeric quotient q satisfy: $-bq+a-r$  is small with $\mathrm{degree}\left(r,x\right)<\mathrm{degree}\left(b,x\right)$. Here, small means $\mathrm{O}\left({10}^{-\mathrm{Digits}}\right)$.
 • If a fourth argument is included in the calling sequence for Quotient or Remainder, it is assigned the remainder r or quotient q, respectively.

Examples

 > $\mathrm{with}\left(\mathrm{SNAP}\right):$
 > $a≔-85{x}^{17}-55{x}^{9}-37{x}^{7}-35{x}^{2}+97x+50:$
 > $b≔79{x}^{5}+56{x}^{4}+49{x}^{3}+63{x}^{2}+57x-59:$
 > $r≔\mathrm{Remainder}\left(a,b,x,'q'\right)$
 ${r}{≔}{50.0020132327863}{}{{x}}^{{4}}{-}{19.3198166346744}{}{{x}}^{{3}}{-}{322.237747865981}{}{{x}}^{{2}}{+}{300.078717373004}{}{x}{+}{20.0352085974540}$ (1)
 > $q$
 ${-}{1.07594936708861}{}{{x}}^{{12}}{+}{0.762698285531166}{}{{x}}^{{11}}{+}{0.126714113893627}{}{{x}}^{{10}}{+}{0.295146883006482}{}{{x}}^{{9}}{-}{0.119722722703336}{}{{x}}^{{8}}{-}{1.55310796081941}{}{{x}}^{{7}}{+}{1.41800886004233}{}{{x}}^{{6}}{-}{0.0646951159943631}{}{{x}}^{{5}}{+}{0.0154956351481713}{}{{x}}^{{4}}{-}{0.0704903789877349}{}{{x}}^{{3}}{-}{2.55944186458305}{}{{x}}^{{2}}{+}{2.95135053578343}{}{x}{-}{0.507877820382136}$ (2)
 > $q≔\mathrm{Quotient}\left(a,b,x\right)$
 ${q}{≔}{-}{1.07594936708861}{}{{x}}^{{12}}{+}{0.762698285531166}{}{{x}}^{{11}}{+}{0.126714113893627}{}{{x}}^{{10}}{+}{0.295146883006482}{}{{x}}^{{9}}{-}{0.119722722703336}{}{{x}}^{{8}}{-}{1.55310796081941}{}{{x}}^{{7}}{+}{1.41800886004233}{}{{x}}^{{6}}{-}{0.0646951159943631}{}{{x}}^{{5}}{+}{0.0154956351481713}{}{{x}}^{{4}}{-}{0.0704903789877349}{}{{x}}^{{3}}{-}{2.55944186458305}{}{{x}}^{{2}}{+}{2.95135053578343}{}{x}{-}{0.507877820382136}$ (3)
 > $\mathrm{expand}\left(a-bq-r\right)$
 ${-}{7.81597009336110}{×}{{10}}^{{-14}}{}{{x}}^{{16}}{-}{5.68434188608080}{×}{{10}}^{{-14}}{}{{x}}^{{15}}{-}{2.13162820728030}{×}{{10}}^{{-14}}{}{{x}}^{{14}}{+}{1.77635683940025}{×}{{10}}^{{-15}}{}{{x}}^{{13}}{-}{1.42108547152020}{×}{{10}}^{{-14}}{}{{x}}^{{12}}{+}{1.42108547152020}{×}{{10}}^{{-14}}{}{{x}}^{{11}}{-}{9.76996261670138}{×}{{10}}^{{-15}}{}{{x}}^{{10}}{+}{3.99680288865056}{×}{{10}}^{{-14}}{}{{x}}^{{8}}{-}{1.13686837721616}{×}{{10}}^{{-13}}{}{{x}}^{{6}}{-}{1.35003119794419}{×}{{10}}^{{-13}}{}{{x}}^{{5}}{-}{1.42108547152020}{×}{{10}}^{{-14}}{}{{x}}^{{17}}{+}{2.84217094304040}{×}{{10}}^{{-14}}{}{{x}}^{{7}}{+}{5.68434188608080}{×}{{10}}^{{-14}}{}{{x}}^{{9}}{+}{2.84217094304040}{×}{{10}}^{{-14}}{}{x}$ (4)

 See Also