IteratedResultantDim0 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[FastArithmeticTools]

  

IteratedResultantDim0

  

iterated resultant of a polynomial w.r.t a 0-dim regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

IteratedResultantDim0(f, rc, R)

Parameters

R

-

a polynomial ring

rc

-

a regular chain

f

-

a polynomial

Description

• 

The function call IteratedResultantDim0(f, rc, R) returns the iterated resultant of f w.r.t. rc. See the command IteratedResultant for a definition of the notion of an iterated resultant.

• 

rc is assumed to be a zero-dimensional normalized regular chain.

• 

Moreover R must have a prime characteristic p such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f and rc are, the larger must be e such that 2e divides p1.  If the degree of f or rc is too large, then an error is raised.

Examples

withRegularChains:

withFastArithmeticTools:

withChainTools:

Define a ring of polynomials.

p962592769;varsx1,x2,x3,x4:RPolynomialRingvars,p:

p962592769

(1)

Randomly generating (dense) regular chain and polynomial

Nnopsvars:dg3:degsseq4,i=1..N:polrandpolyvars,dense,degree=dg+randmodpmodp;tcRandomRegularChainDim0vars,degs,p;Equationstc,R

pol962592762x13+22x12x2+962592714x12x3+962592675x12x4+962592713x1x22+962592707x1x2x4+962592696x1x32+962592765x1x3x4+962592759x1x42+80x23+962592725x22x3+71x22x4+962592694x2x32+962592759x2x3x4+962592729x2x42+23x33+75x32x4+6x3x42+37x43+87x12+97x1x2+962592686x1x3+62x1x4+962592752x22+962592762x2x3+42x2x4+962592677x32+74x3x4+962592746x42+962592687x1+962592719x2+72x3+87x4+874547123

tcregular_chain

x14+962592759x13+962592687x2+71x3+16x4+83x12+9x22+962592709x3+962592686x4+98x2+962592721x32+962592750x4+62x3+37x42+5x4+96x1+962592752x23+25x3+91x4x22+98x32+962592705x4+64x3+962592679x42+962592709x4+962592735x2+962592756x33+44x4+962592767x32+71x42+962592722x4+962592730x3+962592716x43+962592697x42+962592672x4+91831581,x24+x23+x3+55x4+962592741x22+16x32+30x4+962592742x3+962592754x42+962592710x4+962592673x2+72x33+962592682x4+47x32+962592679x42+43x4+92x3+962592678x43+962592681x42+962592721x4+614095058,x34+11x33+962592720x4+962592722x32+40x42+962592688x4+91x3+68x43+962592759x42+31x4+175602554,x44+962592746x43+10x42+962592708x4+685457535

(2)

Compute the iterated resultant of pol w.r.t. tc

r1IteratedResultantDim0pol,tc,R

r1446889812

(3)

Compare with the generic algorithm (non-fast and non-modular algorithm) of the command IteratedResultant.

r2IteratedResultantpol,tc,R

r2446889812

(4)

Check that the two results match.

Expandr1r2modp

0

(5)

See Also

IteratedResultant

IteratedResultantDim1

RandomRegularChainDim0

RandomRegularChainDim1

RegularChains

ResultantBySpecializationCube

SubresultantChainSpecializationCube