GreatestFactorialFactorization - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Algebra : Polynomials : PolynomialTools : GreatestFactorialFactorization

PolynomialTools

  

GreatestFactorialFactorization

  

compute a greatest factorial factorization of a univariate polynomial

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

GreatestFactorialFactorization(f,x)

Parameters

f

-

polynomial in x

x

-

indeterminate

Description

• 

The GreatestFactorialFactorization command computes a greatest factorial factorization [c,[[g1,e1],[g2,e2],...]] of f w.r.t. x. It satisfies the following properties.

  

 f=cg1xg1x1...g1xe1+1g2xg2x1...g2xe2+1... 

  

 gcdgixgix1...gixe1+1,gjx+1gjx+ej=1 for 1<=i<=j 

  

c is constant w.r.t. x, and g1,... are nonconstant primitive polynomials w.r.t. x, and 0<e1<e2<... are integers.

• 

The greatest factorial factorization is unique up to multiplication by units.

• 

GreatestFactorialFactorization can handle the same types of coefficients as the Maple function gcd.

• 

If f is constant w.r.t. x, then the return value is f&comma;.

• 

Partial factorizations of the input are not taken into account.

Examples

withPolynomialTools&colon;

GreatestFactorialFactorizationx8+x2&comma;x

−1&comma;x&comma;1&comma;x2+x+1&comma;2&comma;x+1&comma;3

(1)

GreatestFactorialFactorizationexpandpochhammerx&comma;3pochhammerx&comma;5&comma;x

1&comma;x+2&comma;3&comma;x+4&comma;5

(2)

References

  

Paule, Peter. "Greatest factorial factorization and symbolic summation." Journal of Symbolic Computation Vol. 20, (1995): 235-268.

  

Gerhard, Juergen. "Modular algorithms for polynomial basis conversion and greatest factorial factorization." Proceedings of the Seventh Rhine Workshop on Computer Algebra, RWCA pp. 125-141 ed. T. Mulders, 2000.

See Also

gcd

pochhammer

PolynomialTools

PolynomialTools[ShiftlessDecomposition]

PolynomialTools[Translate]

sqrfree