Redefines the spacetime metric and list of coordinates according to a change in the signature, from any of the four possible signatures (- - - +), (+ - - -), (+ + + -) and (- + + +) to any of the other ones - Maple Programming Help

Physics[Redefine] - Redefines the spacetime metric and list of coordinates according to a change in the signature, from any of the four possible signatures (- - - +), (+ - - -), (+ + + -) and (- + + +) to any of the other ones

 Calling Sequence Redefine(what, fromsignature = ..., tosignature = ...)

Parameters

 what - any of coordinates, metric, all (meaning both); setcoordinates, setmetric, setall, to respectively see how the redefinition changes what, or in addition automatically set (via Setup) the redefined value. fromsignature = ... - optional, to be taken as the starting signature; if not given, it is the signature set at the moment tosignature = ... - optional, to be taken as the desired signature; if not given, it is the signature set at the moment

Description

 • The Redefine command redefines the spacetime metric g_ and list of coordinates according to a change in the signature, from any of the four possible signatures (- - - +), (+ - - -), (+ + + -) and (- + + +) to any of the other ones.
 • When any of fromsignature or tosignature are not given, the corresponding value is the value of the signature set at the moment. To query about this value, enter Setup(signature), or to change it enter Setup(signature = ...) where the right-hand side is any of - - - +, + - - -, + + + - or - + + +. You can enter the signature leaving or not spaces between the +/- signs, and enclosing them with  or " ".
 • The typical scenario for the use of fromsignature is when you change the signature using Setup and notice that the coordinates and metric g_ have not changed accordingly. In this case entering Redefine(all, fromsignature = previous_signature) shows how would the list of coordinates a metric look if they were redefined from the previous signature to the one you set (i.e., the current one). If the result is as desired, you can use the output to call Setup and set things accordingly, or simpler: instead of all, pass setall, as in Redefine(setall, fromsignature = previous_signature), and that will in addition set things up by automatically calling Setup.
 • The typical scenario for the use of tosignature is when you are working with a signature and - say to follow a textbook - you want to change to a different signature, and want that not just the signature but also the ordering of the list of coordinates and/or the spacetime metric change accordingly. Here Redefine(all, tosignature = desired_signature) and Redefine(setall, tosignature = desired_signature) will respectively show or also set the new ordering of the list of coordinates and the metric according to the change to the desired_signature.
 • To restrict these redefinitions to either the coordinates or the metric, instead of all and setall use coordinates and setcoordinates, or metric and setmetric.

Examples

 > $\mathrm{with}\left(\mathrm{Physics}\right):$
 > $\mathrm{Setup}\left(\mathrm{mathematicalnotation}=\mathrm{true},\mathrm{coordinates}=\mathrm{cartesian}\right)$
 ${}\mathrm{Default differentiation variables for d_, D_ and dAlembertian are:}{}{}\left\{X=\left(x{,}y{,}z{,}t\right)\right\}$
 ${}\mathrm{Systems of spacetime coordinates are:}{}{}\left\{X=\left(x{,}y{,}z{,}t\right)\right\}$
 $\mathrm{_______________________________________________________}$
 $\left[{\mathrm{coordinatesystems}}{=}\left\{{X}\right\}{,}{\mathrm{mathematicalnotation}}{=}{\mathrm{true}}\right]$ (1)

Consider the generic form of a spacetime metric, for the purpose of illustrating its redefinition (reordering of lines and columns) when changing the signature, it doesn't need to depend on the coordinates

 > $G≔\mathrm{Matrix}\left(4,\mathrm{symbol}=g,\mathrm{shape}=\mathrm{symmetric}\right)$
 $\left[\begin{array}{cccc}{g}_{1,1}& {g}_{1,2}& {g}_{1,3}& {g}_{1,4}\\ {g}_{1,2}& {g}_{2,2}& {g}_{2,3}& {g}_{2,4}\\ {g}_{1,3}& {g}_{2,3}& {g}_{3,3}& {g}_{3,4}\\ {g}_{1,4}& {g}_{2,4}& {g}_{3,4}& {g}_{4,4}\end{array}\right]$ (2)

Set the metric with this value, and in the same call query the value of the signature: it is (- - - +):

 > $\mathrm{Setup}\left(\mathrm{signature},\mathrm{g_}=G\right)$
 $\left[{\mathrm{metric}}{=}\left\{\left({1}{,}{1}\right){=}{{g}}_{{1}{,}{1}}{,}\left({1}{,}{2}\right){=}{{g}}_{{1}{,}{2}}{,}\left({1}{,}{3}\right){=}{{g}}_{{1}{,}{3}}{,}\left({1}{,}{4}\right){=}{{g}}_{{1}{,}{4}}{,}\left({2}{,}{2}\right){=}{{g}}_{{2}{,}{2}}{,}\left({2}{,}{3}\right){=}{{g}}_{{2}{,}{3}}{,}\left({2}{,}{4}\right){=}{{g}}_{{2}{,}{4}}{,}\left({3}{,}{3}\right){=}{{g}}_{{3}{,}{3}}{,}\left({3}{,}{4}\right){=}{{g}}_{{3}{,}{4}}{,}\left({4}{,}{4}\right){=}{{g}}_{{4}{,}{4}}\right\}{,}{\mathrm{signature}}{=}{\mathrm{- - - +}}\right]$ (3)

Track the line element

 > ${\mathrm{g_}}_{\mathrm{lineelement}}$
 ${{g}}_{{3}{,}{3}}{{\mathbf{ⅆ}}{}\left({z}\right)}^{{2}}{+}\left({2}{\mathbf{ⅆ}}{}\left({x}\right){{g}}_{{1}{,}{3}}{+}{2}{{g}}_{{2}{,}{3}}{\mathbf{ⅆ}}{}\left({y}\right)\right){\mathbf{ⅆ}}{}\left({z}\right){+}{{g}}_{{1}{,}{1}}{{\mathbf{ⅆ}}{}\left({x}\right)}^{{2}}{+}{2}{{g}}_{{1}{,}{2}}{\mathbf{ⅆ}}{}\left({x}\right){\mathbf{ⅆ}}{}\left({y}\right){+}{{g}}_{{2}{,}{2}}{{\mathbf{ⅆ}}{}\left({y}\right)}^{{2}}{+}{\mathbf{ⅆ}}{}\left({t}\right)\left({\mathbf{ⅆ}}{}\left({t}\right){{g}}_{{4}{,}{4}}{+}{2}{\mathbf{ⅆ}}{}\left({x}\right){{g}}_{{1}{,}{4}}{+}{2}{\mathbf{ⅆ}}{}\left({y}\right){{g}}_{{2}{,}{4}}{+}{2}{\mathbf{ⅆ}}{}\left({z}\right){{g}}_{{3}{,}{4}}\right)$ (4)

Change now the signature by reversing the position of the time-like component, from 4 to 1

 > $\mathrm{Setup}\left(\mathrm{signature}="+---"\right)$
 ${\mathbit{Warning, a representation for the Dirac matrices is only implemented for an Euclidean or Minkowski spacetime; removing the previous \text{'}}}{}{\mathbit{standard}}{}{\mathbit{\text{'} representaton}}$
 $\left[{\mathrm{signature}}{=}{\mathrm{+ - - -}}\right]$ (5)

Neither the metric nor the coordinates change: t is still in position 4 and the component (1, 1) of the metric is still ${g}_{1,1}$:

 > $\mathrm{Coordinates}\left(\right)$
 ${}\mathrm{Systems of spacetime coordinates are:}{}{}\left\{X=\left(x{,}y{,}z{,}t\right)\right\}$
 $\left\{{X}\right\}$ (6)
 > ${\mathrm{g_}}_{[]}$
 ${{\mathrm{g_}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}{g}_{1,1}& {g}_{1,2}& {g}_{1,3}& {g}_{1,4}\\ {g}_{1,2}& {g}_{2,2}& {g}_{2,3}& {g}_{2,4}\\ {g}_{1,3}& {g}_{2,3}& {g}_{3,3}& {g}_{3,4}\\ {g}_{1,4}& {g}_{2,4}& {g}_{3,4}& {g}_{4,4}\end{array}\right]\right)$ (7)

This design gives you freedom to set things as necessary. However, after changing the signature we may also want to redefine the coordinates - place t in position 1 - and possibly also the metric reordering its lines and rows accordingly. For this purpose you can use Redefine, to which you need to indicate the previous signature (or in a different situation the new signature, to explore the effect of a change before doing it) and an indication of whether you want to redefine the metric, the coordinates or all

 > $\mathrm{Redefine}\left(\mathrm{coordinates},\mathrm{fromsignature}="---+"\right)$
 $\left[{t}{,}{x}{,}{y}{,}{z}\right]$ (8)
 > $\mathrm{Redefine}\left(\mathrm{metric},\mathrm{fromsignature}="---+"\right)$
 $\left[\begin{array}{cccc}{g}_{4,4}& {g}_{1,4}& {g}_{2,4}& {g}_{3,4}\\ {g}_{1,4}& {g}_{1,1}& {g}_{1,2}& {g}_{1,3}\\ {g}_{2,4}& {g}_{1,2}& {g}_{2,2}& {g}_{2,3}\\ {g}_{3,4}& {g}_{1,3}& {g}_{2,3}& {g}_{3,3}\end{array}\right]$ (9)

These redefinitions however were not set, the keywords coordinates, metric, or all only trigger the change, t is still in position 4 and the component (1,1) of the metric is still ${g}_{1,1}$

 > $\mathrm{Coordinates}\left(\right)$
 ${}\mathrm{Systems of spacetime coordinates are:}{}{}\left\{X=\left(x{,}y{,}z{,}t\right)\right\}$
 $\left\{{X}\right\}$ (10)
 > ${\mathrm{g_}}_{[]}$
 ${{\mathrm{g_}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}{g}_{1,1}& {g}_{1,2}& {g}_{1,3}& {g}_{1,4}\\ {g}_{1,2}& {g}_{2,2}& {g}_{2,3}& {g}_{2,4}\\ {g}_{1,3}& {g}_{2,3}& {g}_{3,3}& {g}_{3,4}\\ {g}_{1,4}& {g}_{2,4}& {g}_{3,4}& {g}_{4,4}\end{array}\right]\right)$ (11)

You can now either use the output of this routine to redefine things using the Setup command, or do all in one go using any of the keywords setcoordinates, setmetric, or setall, for example

 > $\mathrm{Redefine}\left(\mathrm{setall},\mathrm{fromsignature}="---+"\right)$
 $\left[{X}\right]{,}\left[\begin{array}{cccc}{{g}}_{{4}{,}{4}}& {{g}}_{{1}{,}{4}}& {{g}}_{{2}{,}{4}}& {{g}}_{{3}{,}{4}}\\ {{g}}_{{1}{,}{4}}& {{g}}_{{1}{,}{1}}& {{g}}_{{1}{,}{2}}& {{g}}_{{1}{,}{3}}\\ {{g}}_{{2}{,}{4}}& {{g}}_{{1}{,}{2}}& {{g}}_{{2}{,}{2}}& {{g}}_{{2}{,}{3}}\\ {{g}}_{{3}{,}{4}}& {{g}}_{{1}{,}{3}}& {{g}}_{{2}{,}{3}}& {{g}}_{{3}{,}{3}}\end{array}\right]$ (12)

Now t in position 1 and the component (1,1) of the metric equal to ${g}_{4,4}$

 > $\mathrm{Coordinates}\left(\right)$
 ${}\mathrm{Systems of spacetime coordinates are:}{}{}\left\{X=\left(t{,}x{,}y{,}z\right)\right\}$
 $\left\{{X}\right\}$ (13)
 > ${\mathrm{g_}}_{[]}$
 ${{\mathrm{g_}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}{g}_{4,4}& {g}_{1,4}& {g}_{2,4}& {g}_{3,4}\\ {g}_{1,4}& {g}_{1,1}& {g}_{1,2}& {g}_{1,3}\\ {g}_{2,4}& {g}_{1,2}& {g}_{2,2}& {g}_{2,3}\\ {g}_{3,4}& {g}_{1,3}& {g}_{2,3}& {g}_{3,3}\end{array}\right]\right)$ (14)

Note that, despite the reordering of lines and columns in the metric, because we also reordered the variables, the line element has not changed:

 > ${\mathrm{g_}}_{\mathrm{lineelement}}$
 ${{g}}_{{2}{,}{2}}{{\mathbf{ⅆ}}{}\left({y}\right)}^{{2}}{+}\left({2}{\mathbf{ⅆ}}{}\left({t}\right){{g}}_{{2}{,}{4}}{+}{2}{{g}}_{{1}{,}{2}}{\mathbf{ⅆ}}{}\left({x}\right)\right){\mathbf{ⅆ}}{}\left({y}\right){+}{{g}}_{{4}{,}{4}}{{\mathbf{ⅆ}}{}\left({t}\right)}^{{2}}{+}{2}{{g}}_{{1}{,}{4}}{\mathbf{ⅆ}}{}\left({t}\right){\mathbf{ⅆ}}{}\left({x}\right){+}{{g}}_{{1}{,}{1}}{{\mathbf{ⅆ}}{}\left({x}\right)}^{{2}}{+}{\mathbf{ⅆ}}{}\left({z}\right)\left({\mathbf{ⅆ}}{}\left({z}\right){{g}}_{{3}{,}{3}}{+}{2}{\mathbf{ⅆ}}{}\left({t}\right){{g}}_{{3}{,}{4}}{+}{2}{\mathbf{ⅆ}}{}\left({x}\right){{g}}_{{1}{,}{3}}{+}{2}{{g}}_{{2}{,}{3}}{\mathbf{ⅆ}}{}\left({y}\right)\right)$ (15)
 > $\mathrm{normal}\left(-\right)$
 ${0}$ (16)

Redefine is particularly useful when working with metrics from the database of solutions to Einstein's equations, all of which reset the signature to (- + + +) when loaded. For example:

 > ${\mathrm{g_}}_{\left[12,21,1\right]}$
 ${}\mathrm{_______________________________________________________}$
 ${}\mathrm{Systems of spacetime coordinates are:}{}{}\left\{X=\left(t{,}x{,}y{,}\mathrm{\phi }\right)\right\}$
 ${}\mathrm{Default differentiation variables for d_, D_ and dAlembertian are:}{}{}\left\{X=\left(t{,}x{,}y{,}\mathrm{\phi }\right)\right\}$
 $\mathrm{The}{}\mathrm{McLenaghan, Tariq \left(1975\right)}{}\mathrm{metric in coordinates}{}\mathrm{Tupper \left(1976\right)}$
 $\mathrm{Parameters:}{}\left[a{,}k{,}\mathrm{κ0}\right]$
 $\mathrm{Comments:}{}k paramⅇtrizⅇs thⅇ most gⅇnⅇral ⅇlⅇctromagnⅇtic invariant with rⅇspⅇct to thⅇ last 3 Killing vⅇctors$
 $\mathrm{Resetting the signature of spacetime from}{}\left(\mathrm{+ - - -}\right){}\mathrm{to}{}\left(\mathrm{- + + +}\right){}\mathrm{in order to match the signature in the database of metrics}$
 ${}\mathrm{_______________________________________________________}$
 ${{\mathrm{g_}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}-1& 0& 0& 2y\\ 0& \frac{{a}^{2}}{{x}^{2}}& 0& 0\\ 0& 0& \frac{{a}^{2}}{{x}^{2}}& 0\\ 2y& 0& 0& {x}^{2}-4{y}^{2}\end{array}\right]\right)$ (17)

 > $\mathrm{Setup}\left(\mathrm{signature}\right)$
 $\left[{\mathrm{signature}}{=}{\mathrm{- + + +}}\right]$ (18)
 > $\mathrm{Redefine}\left(\mathrm{all},\mathrm{tosignature}="---+"\right)$
 $\left[{x}{,}{y}{,}{\mathrm{\phi }}{,}{t}\right]{,}\left[\begin{array}{cccc}{-}\frac{{{a}}^{{2}}}{{{x}}^{{2}}}& {0}& {0}& {0}\\ {0}& {-}\frac{{{a}}^{{2}}}{{{x}}^{{2}}}& {0}& {0}\\ {0}& {0}& {-}{{x}}^{{2}}{+}{4}{{y}}^{{2}}& {-}{2}{y}\\ {0}& {0}& {-}{2}{y}& {1}\end{array}\right]$ (19)

How would this metric [12, 21, 1] and coordinates $\left[t,x,y,\mathrm{\phi }\right]$ would look with the original signature (- - - +) ?

 > $\mathrm{Redefine}\left(\mathrm{all},\mathrm{tosignature}="---+"\right)$
 $\left[{x}{,}{y}{,}{\mathrm{\phi }}{,}{t}\right]{,}\left[\begin{array}{cccc}{-}\frac{{{a}}^{{2}}}{{{x}}^{{2}}}& {0}& {0}& {0}\\ {0}& {-}\frac{{{a}}^{{2}}}{{{x}}^{{2}}}& {0}& {0}\\ {0}& {0}& {-}{{x}}^{{2}}{+}{4}{{y}}^{{2}}& {-}{2}{y}\\ {0}& {0}& {-}{2}{y}& {1}\end{array}\right]$ (20)
 > 

By replacing all by setall in the command above not only the list of coordinates and metric matrix form are returned but they are also set in one go.

References

 [1] Landau, L.D., and Lifshitz, E.M. The Classical Theory of Fields, Course of Theoretical Physics Volume 2, fourth revised English edition. Elsevier, 1975.

Compatibility

 • The Physics[Redefine] command was introduced in Maple 2017.