Berkowitz Algorithm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LinearAlgebra[Generic]

  

BerkowitzAlgorithm

  

apply the Berkowitz algorithm to a square Matrix

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

BerkowitzAlgorithm[R](A)

Parameters

R

-

a table or module, the domain of computation

A

-

square Matrix of values in R

Description

• 

Given an n x n Matrix A of values from a commutative ring R, BerkowitzAlgorithm[R](A) returns a Vector V of dimension n+1 of values in R with the coefficients of the characteristic polynomial of A.

• 

The characteristic polynomial is the polynomial V[1]*x^n + V[2]*x^(n-1) + ... + V[n]*x + V[n+1].

• 

The Berkowitz algorithm does O(n^4) multiplications and additions in R.

• 

The (indexed) parameter R, which specifies the domain of computation, a commutative ring, must be a Maple table/module which has the following values/exports:

  

R[`0`] : a constant for the zero of the ring R

  

R[`1`] : a constant for the (multiplicative) identity of R

  

R[`+`] : a procedure for adding elements of R (nary)

  

R[`-`] : a procedure for negating and subtracting elements of R (unary and binary)

  

R[`*`] : a procedure for multiplying elements of R (binary and commutative)

  

R[`=`] : a boolean procedure for testing if two elements of R are equal

Examples

withLinearAlgebraGeneric:

Z`0`,Z`1`,Z`+`,Z`-`,Z`*`,Z`=`0,1,`+`,`-`,`*`,`=`:

AMatrix2,1,4,3,2,1,0,0,5

A214321005

(1)

CBerkowitzAlgorithmZA

C1−921−5

(2)

x3|x2|x|1·C

x39x2+21x5

(3)

See Also

LinearAlgebra[CharacteristicPolynomial]

LinearAlgebra[Generic]

LinearAlgebra[Generic][CharacteristicPolynomial]

LinearAlgebra[Modular][CharacteristicPolynomial]