SolutionDimension - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SolutionDimension

calculate the solution dimension for a LAVF object.

IsFiniteType

check if a LAVF object is of finite type

IsTrivial

check if a LAVF object has only the trivial solution

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SolutionDimension( obj)

IsFiniteType( obj)

IsTrivial( obj)

Parameters

obj

-

a LAVF object

Description

• 

The SolutionDimension method calculates the solution dimension of the determining system for a LAVF object. It returns  if the solution dimension is not finite.

• 

Let L be a LAVF object. Then IsFiniteType(L) returns true if and only if SolutionDimension(L) < .

• 

Let L be a LAVF object. Then IsTrivial(L) returns true if and only if SolutionDimension(L) = 0.

• 

These methods are front-end to the corresponding methods of a LHPDE object. That is, let L be a LAVF object and S be its determining system (i.e.  S = GetDeterminingSystem(L)), then SolutionDimension(L) equals SolutionDimension(S), IsFiniteType(L) equals IsFiniteType(S) and IsTrivial(L) equals IsTrivial(S). For more detail, see the corresponding methods: SolutionDimension, IsFiniteType, IsTrivial of a LHPDE object.

• 

These methods are associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields&colon;

Typesetting:-Settingsuserep=true&colon;

Typesetting:-Suppressξx&comma;y&comma;ηx&comma;y&colon;

First, construct an indeterminate vector field and a determining system, then construct an LAVF object from them...

VVectorFieldξx&comma;yDx+ηx&comma;yDy&comma;space=x&comma;y

Vξ&DifferentialD;&DifferentialD;x+η&DifferentialD;&DifferentialD;y

(1)

E2LHPDEdiffξx&comma;y&comma;y&comma;y=0&comma;diffηx&comma;y&comma;x=diffξx&comma;y&comma;y&comma;diffηx&comma;y&comma;y=0&comma;diffξx&comma;y&comma;x=0&comma;indep=x&comma;y&comma;dep=ξ&comma;η

E2ξy,y=0&comma;ηx=ξy&comma;ηy=0&comma;ξx=0,indep=x&comma;y,dep=ξ&comma;η

(2)

LLAVFV&comma;E2

Lξ&DifferentialD;&DifferentialD;x+η&DifferentialD;&DifferentialD;y&whereξy,y=0&comma;ξx=0&comma;ηx=ξy&comma;ηy=0

(3)

Now we can apply the methods to see properties of L.

SolutionDimensionL

3

(4)

The determining system of L is of finite type but not trivial:

IsFiniteTypeL

true

(5)

IsTrivialL

false

(6)

Compatibility

• 

The SolutionDimension, IsFiniteType and IsTrivial commands were introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LAVF (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]

LieAlgebrasOfVectorFields[LAVF]

SolutionDimension

IsFiniteType

IsTrivial