Hypercenter - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

LowerCentralSeries

  

construct the lower central series of a group

  

UpperCentralSeries

  

construct the upper central series of a group

  

IsNilpotent

  

determine if a group is nilpotent

  

NilpotencyClass

  

find the nilpotency class of a group

  

NilpotentResidual

  

find the nilpotency residual of a group

  

Hypercenter

  

find the hypercenter of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

LowerCentralSeries( G )

UpperCentralSeries( G )

IsNilpotent( G )

NilpotencyClass( G )

NilpotentResidual( G )

Hypercenter( G )

Parameters

G

-

a permutation group

Description

• 

The lower central series of a group  is the descending normal series of  whose terms are the successive commutator subgroups, defined as follows. Let  and, for , define . The sequence

  

is called the lower central series of . If the nilpotent residual  is the trivial group, then we say that  is nilpotent. In this case, the number  is called the nilpotency class of , and the nilpotent residual  of  is the last term of the lower central series.

• 

The LowerCentralSeries( G ) command constructs the lower central series of a group G. The group G must be an instance of a permutation group.

• 

The IsNilpotent( G ) command determines whether a group G is nilpotent.

• 

The NilpotencyClass( G ) command returns the nilpotency class of G; that is, the length of the lower central series of G.

• 

The NilpotentResidual( G ) command returns the nilpotent residual of a group G.

• 

The upper central series of a group  is the ascending normal series of  whose terms are defined, recursively, as follows. Let  and, for , define  to be the pre-image, in , of the center of the quotient group .  (Thus,  is just the center of .) The sequence

  

is called the upper central series of .

• 

The UpperCentralSeries( G ) command constructs the upper central series of a group G.

• 

The group  is nilpotent if, and only if, the last term  of the upper central series is equal to . In general, the final term  is called the hypercenter of .

• 

The Hypercenter( G ) command returns the hypercenter of a group G.

• 

The Hypercentre command is provided as an alias.

• 

The group G must be an instance of a permutation group.

• 

Both the lower and upper central series of G are represented by a series data structure which admits certain operations common to all series.  See GroupTheory[Series].

Examples

(1)

(2)

Warning, over-writing property `["LowerCentralSeries"]' with a different value

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Compatibility

• 

The GroupTheory[LowerCentralSeries] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DerivedSeries]

GroupTheory[PermutationGroup]

GroupTheory[Series]

 


Download Help Document