BlocksImage - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

IsPrimitive

  

determine whether a permutation group is primitive

  

BlockSystem

  

return a non-trivial block system for a transitive group if one exists

  

MinimalBlockSystem

  

return a minimal non-trivial block system for a transitive group if one exists

  

BlocksImage

  

return a permutation group equivalent to the action of a transitive group on a block system

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsPrimitive( G, domain )

BlockSystem( G, domain )

BlockSystem( G, domain, containing = S )

MinimalBlockSystem( G, domain )

BlocksImage( G, B )

Parameters

G

-

: PermutationGroup : a permutation group

S

-

: set(posint) : a subset of the support of G

B

-

: set(set(posint)) : a block system for G

domain

-

: set(posint) : (optional) a G-invariant subset of the support of G

Description

• 

A block for a permutation group , acting on a set  , is a subset  of  such that, for all  in , either  or  and  are disjoint. A block  is trivial if it consists of a single point or if  . A transitive permutation group  is primitive if it possesses no non-trivial block. Note that an intransitive group is not primitive.

• 

A block system for  is a collection of blocks that are the images of one of its members; that is, the orbit of a block under the induced action of  on the subsets of .

• 

The IsPrimitive( G ) command returns true if the permutation group G is primitive, and returns false otherwise. The group G must be an instance of a permutation group.

• 

You can pass an optional second domain argument to check whether G acts primitively on the subset domain of its support. By default, domain is the entire support of G.

• 

The BlockSystem( G ) command returns a non-trivial block system for G if one exists or, in case G is primitive, the block system consisting only of .

• 

If the optional 'containing' = S option is passed, then the BlockSystem command returns a non-trivial block system, provided that one exists, in which the subset S of the domain of G is contained entirely within one block. The resulting block system is such that the blocks are minimal with respect to including the set S within a single block.

• 

The BlocksImage( G, B ) command returns a permutation group permutation equivalent to the action of  on the block system .

• 

The MinimalBlockSystem( G ) command returns a minimal block system for G provided one exists. The members of the block system are maximal blocks with respect to inclusion. If G is primitive, then the trivial block system consisting of the entire support of G is returned.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Use the optional domain argument to restrict the action.

(9)

This group is not primitive on its support.

(10)

It does not even act transitively.

(11)

Restricting to the -stable subset , we obtain a primitive action.

(12)

However, the action on the -stable subset  is not primitive.

(13)

A block system demonstrating that  is not primitive can be obtained as follows.

(14)

However, there is no block system in which  is contained in a non-trivial block.

(15)

Consider the group of the Rubik's cube.

(16)

This group is not primitive

(17)

That is because it does not even act transitively.

(18)

However, restricting to one of its (two) orbits, upon which it of course acts transitively, it is still not primitive.

(19)

(20)

Because  is a minimal block system (consisting of maximal blocks), the blocks image of  on  is primitive.

(21)

(22)

(23)

(24)

(25)

Compatibility

• 

The GroupTheory[IsPrimitive] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[IsTransitive]

 


Download Help Document