AllHamiltonianGroups - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : AllHamiltonianGroups

GroupTheory

  

HamiltonianGroup

  

construct a finite Hamiltonian group

  

NumHamiltonianGroups

  

find the number of Hamiltonian groups of a given order

  

AllHamiltonianGroups

  

find all Hamiltonian groups of a given order

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

HamiltonianGroup( n, k )

NumHamiltonianGroups( n )

AllHamiltonianGroups( n )

Parameters

n

-

a positive integer

k

-

a positive integer

Options

• 

formopt : option of the form form = "permgroup" or form = "fpgroup"

Description

• 

A group is Hamiltonian if it is non-Abelian, and if every subgroup is normal. Every Hamiltonian group has the quaternion group as a direct factor, so the order of every finite Hamiltonian group is a multiple of 8.

• 

For a positive integer n, the NumHamiltonianGroups( n ) command returns the number of Hamiltonian groups of order n. (This is 0 if n is not a multiple of 8.)

• 

The HamiltonianGroup( n, k ) command returns the k-th Hamiltonian group of order n. An exception is raised if n is not a multiple of 8.

• 

The AllHamiltonianGroups( n ) command returns an expression sequence of all the Hamiltonian groups of order n, where n is a positive integer. Note that NULL is returned if n is not a multiple of 8.

• 

The HamiltonianGroup and AllHamiltonianGroups commands accept an option of the form form = F, where F may be either of the strings "permgroup" (the default), or "fpgroup".

Examples

withGroupTheory:

There is an unique Hamiltonian group of each 2-power greater than or equal to 8.

seqNumHamiltonianGroups2i,i=1..20

0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

(1)

There are no Hamiltonian groups of order 25.

NumHamiltonianGroups25

0

(2)

NumHamiltonianGroups432

3

(3)

GHamiltonianGroup432,2

G < a permutation group on 22 letters with 5 generators >

(4)

IsHamiltonianG

true

(5)

AllHamiltonianGroups432&comma;form=fpgroup

i&comma;j&comma;_g&comma;_a1&comma;_a2&comma;_a3_g2&comma;_a13&comma;_a23&comma;_a33&comma;i4&comma;i2j2&comma;iji-1j&comma;_a1-1_g-1_a1_g&comma;_a1-1i-1_a1i&comma;_a1-1j-1_a1j&comma;_a2-1_a1-1_a2_a1&comma;_a2-1_g-1_a2_g&comma;_a2-1i-1_a2i&comma;_a2-1j-1_a2j&comma;_a3-1_a1-1_a3_a1&comma;_a3-1_a2-1_a3_a2&comma;_a3-1_g-1_a3_g&comma;_a3-1i-1_a3i&comma;_a3-1j-1_a3j&comma;i-1_g-1i_g&comma;j-1_g-1j_g,i&comma;j&comma;_g0&comma;_a1&comma;_a2_g02&comma;_a13&comma;i4&comma;i2j2&comma;iji-1j&comma;_a1-1_g0-1_a1_g0&comma;_a1-1i-1_a1i&comma;_a1-1j-1_a1j&comma;_a2-1_a1-1_a2_a1&comma;_a2-1_g0-1_a2_g0&comma;_a2-1i-1_a2i&comma;_a2-1j-1_a2j&comma;i-1_g0-1i_g0&comma;j-1_g0-1j_g0&comma;_a29,i&comma;j&comma;_g1&comma;_a1_g12&comma;i4&comma;i2j2&comma;iji-1j&comma;_a1-1_g1-1_a1_g1&comma;_a1-1i-1_a1i&comma;_a1-1j-1_a1j&comma;i-1_g1-1i_g1&comma;j-1_g1-1j_g1&comma;_a127

(6)

Compatibility

• 

The GroupTheory[HamiltonianGroup], GroupTheory[NumHamiltonianGroups] and GroupTheory[AllHamiltonianGroups] commands were introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory

GroupTheory[IsHamiltonian]

GroupTheory[NumGroups]