GroupTheory/ChevalleyF4 - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/ChevalleyF4

GroupTheory

  

ChevalleyF4

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ChevalleyF4( q )

Parameters

q

-

: algebraic : an algebraic expression, taken to be a prime power

Description

• 

The Chevalley group F4q , for a prime power q, is a simple group of Lie type.

• 

The ChevalleyF4( q ) command returns a permutation group isomorphic to the Chevalley group F4q , for q=2. For non-numeric values of the argument q, or for prime powers q larger than 2, a symbolic group representing the group F4q is returned.

Examples

withGroupTheory:

GChevalleyF42:

GroupOrderG

3311126603366400

(1)

IsSimpleG

true

(2)

If the value of the prime power q is too large, or if q is a non-numeric expression, then a symbolic group representing F4q is returned.

GChevalleyF45

GF45

(3)

GroupOrderG

2131486317725501953125000000000000000

(4)

IsSimpleG

true

(5)

ClassNumberG

1156

(6)

GeneratorsG

Error, (in GroupTheory:-Generators) cannot compute the generators of a symbolic group

GChevalleyF4q

GF4q

(7)

GroupOrderG

q24q21q61q81q121

(8)

IsSimpleG

true

(9)

MinPermRepDegreeG

q121q4+1q1

(10)

Compatibility

See Also

GroupTheory[ChevalleyG2]

GroupTheory[ExceptionalGroup]