GraphTheory[SpecialGraphs]

 WagnerGraph
 construct Wagner graph

Parameters

 n - positive integer L1 - list of even length; vertex labels for graph L2 - list of 8 elements; vertex labels for graph

Description

 • WagnerGraph() creates the Wagner graph.

Definitions

 • The Möbius ladder graph on 2n vertices is similar to the ladder graph with two additional edges, between vertices 1 and 2n and vertices 2 and 2n-1. These edges join the ends of the ladder to form a Möbius strip. It is named after August Ferdinand Möbius.
 • The Wagner graph is the special case of the Möbius ladder graph for n=4.

Examples

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $\mathrm{with}\left(\mathrm{SpecialGraphs}\right):$
 > $L≔\mathrm{MoebiusLadderGraph}\left(5\right)$
 ${L}{≔}{\mathrm{Graph 1: an undirected graph with 10 vertices and 15 edge\left(s\right)}}$ (1)
 > $\mathrm{Edges}\left(L\right)$
 $\left\{\left\{{1}{,}{2}\right\}{,}\left\{{1}{,}{3}\right\}{,}\left\{{1}{,}{10}\right\}{,}\left\{{2}{,}{4}\right\}{,}\left\{{2}{,}{9}\right\}{,}\left\{{3}{,}{4}\right\}{,}\left\{{3}{,}{5}\right\}{,}\left\{{4}{,}{6}\right\}{,}\left\{{5}{,}{6}\right\}{,}\left\{{5}{,}{7}\right\}{,}\left\{{6}{,}{8}\right\}{,}\left\{{7}{,}{8}\right\}{,}\left\{{7}{,}{9}\right\}{,}\left\{{8}{,}{10}\right\}{,}\left\{{9}{,}{10}\right\}\right\}$ (2)
 > $\mathrm{DrawGraph}\left(L\right)$

Compatibility

 • The GraphTheory[SpecialGraphs][MoebiusLadderGraph] command was introduced in Maple 2024.