DifferentialGeometry/Tensor/SectionalCurvature - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/SectionalCurvature

Tensor[SectionalCurvature] - calculate the sectional curvature for a metric 

Calling Sequences

     SectionalCurvature(g, R, X, Y)

Parameters

   g    - a metric tensor on the tangent bundle of a manifold

   R    - the curvature tensor of the metric calculated from the Christoffel symbol of

   X, Y - a pair of vectors

 

 

Description

Examples

See Also

Description

• 

Let  be an -dimensional manifold with metric . The sectional curvature of the metric  at a point  is the Gaussian curvature  (at ) of the geodesic surface whose tangent space at is spanned by vectors  and . If  is the covariant form of the curvature tensor (that is,  is a tensor of type ), then

.

• 

If  is independent of the choice of the vectors  and  then , where  is the Ricci scalar of .

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SectionalCurvature(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:- SectionalCurvature(...).

Examples

 

Example 1.

First create a 2 dimensional manifold  and define a metric  on .

M4 > 

(2.1)
M1 > 

(2.2)

 

 

Compute the sectional curvature determined by the coordinate basis vectors  and  .

M1 > 

(2.3)
M1 > 

(2.4)

 

For 2-dimensional manifolds the sectional curvature coincides with the Gaussian curvature . Let us check this formula.

M1 > 

(2.5)
M1 > 

(2.6)
M1 > 

(2.7)

 

Example 2.

First create a 3 dimensional manifold  and define a metric  on .

M1 > 

(2.8)
M2 > 

(2.9)

 

Define a pair of vectors which span a generic tangent plane.

M2 > 

(2.10)
M2 > 

(2.11)

 

Calculate the curvature and sectional curvature. Note that the sectional curvature is independent of the parameters  appearing in the vector fields  and .

M2 > 

M2 > 

(2.12)

 

Since the metric  has constant sectional curvature and the dimension of  is , the sectional curvature is 1/6 the Ricci scalar.

M2 > 

(2.13)

 

Example 3.

We re-work the previous example in an orthonormal frame.

M2 > 

(2.14)
M2 > 

M2 > 

(2.15)
M3 > 

(2.16)

 

Calculate the sectional curvature.

M3 > 

M3 > 

(2.17)

 

Example 4. 

First create a 3 dimensional manifold  and define a metric  on .

M3 > 

(2.18)
M4 > 

(2.19)

 

Define a pair of vectors which span a generic tangent plane.

M4 > 

(2.20)
M4 > 

(2.21)

 

Calculate the curvature and sectional curvature. In this example, the sectional curvature is dependent on the parameters  appearing in the vector fields  and .

M4 > 

M4 > 

(2.22)

See Also

DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CurvatureTensor, Physics[Riemann], DGinfo,  RicciTensor, Physics[Ricci]


Download Help Document