TensorProductOfRepresentations - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : TensorProductOfRepresentations

LieAlgebras[TensorProductOfRepresentations] - form the tensor product representation for a list of representations of a Lie algebra; form various tensor product representations from a single representation of a Lie algebra

Calling Sequences

     TensorProductOfRepresentations(R, W)

     TensorProductOfRepresentations(ρ, T, W)

Parameters

     R         - a list ρ1,ρ2, ... of representations of a Lie algebra 𝔤 on vector spaces V1,V2...

     W         - a Maple name or string, the name of the frame for the representation space for the tensor product representation

     ρ         - a representation of a Lie algebra 𝔤 on a vector space V

     T         - a list of linearly independent type r,s tensors on V defining a subspace of tensors invariant under the induced representation of ρ

 

Description

Examples

See Also

Description

• 

Let ρ1: 𝔤  glV1, ρ2: 𝔤  glV2, ... be a list of representations of a Lie algebra 𝔤. Let W = V1 V2 be the tensor product of the vector spaces V1, V2, ... . The tensor product of the representations ρ1, ρ2, ... is the representation ρ: 𝔤  gl(W) defined by

ρxy 1 y2  ... = ρ1xy1  y2 + y1  ρ2x y2+  where x  𝔤 and y1  V1, y2   V2 , ... .

• 

Let ρ: 𝔤  glVbe a representation. Then ρ determines a representation τ of 𝔤 on TsrV, the space of type r, s tensors on V. The representation τ , in turn, the restricts to any τ-invariant subspace, spanned by a list T of  p  type r,s tensors. The second calling sequence returns this pdimensional representation of ρ.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

Define the standard representation and the adjoint representation for sl2. Then form the tensor product representation. First, set up the representation spaces.

DGsetupx1,x2,V1:

V1 > 

DGsetupy1,y2,y2,V2:

 

Define the standard representation.

V2 > 

M1Matrix0,1,0,0,Matrix1,0,0,1,Matrix0,0,1,0

V2 > 

LLieAlgebraDataM1,sl2

L:=e1,e2=2e1,e1,e3=e2,e2,e3=2e3

(2.1)
V2 > 

DGsetupL:

sl2 > 

ρ1Representationsl2,V1,M1

 

Define the adjoint representation using the Adjoint command.

sl2 > 

ρ2Representationsl2,V2,Adjoint

 

We will need a 6-dimensional vector space to represent the tensor product of rho1 and rho2.

sl2 > 

DGsetupz1,z2,z3,z4,z5,z6,W1:

W1 > 

φ1TensorProductOfRepresentationsρ1,ρ2,W1

 

Use the Query command to verify that rho1 is a representation.

sl2 > 

Queryφ1,Representation

true

(2.2)

 

Example 2.

Compute the representation of rho1 (the standard representation of sl2) on the 3rd symmetric product Sym3V1of V1. First, use the GenerateSymmetricTensors command to generate a basis T1 for Sym3V1.

sl2 > 

ChangeFrameV1:

V1 > 

T1Tensor:-GenerateSymmetricTensorsD_x1,D_x2,3

T1:=D_x1D_x1D_x1,13D_x1D_x1D_x2+13D_x1D_x2D_x1+13D_x2D_x1D_x1,13D_x1D_x2D_x2+13D_x2D_x1D_x2+13D_x2D_x2D_x1,D_x2D_x2D_x2

(2.3)

 

We will need a - dimensional representation space.

V1 > 

DGsetupz1,z2,z3,z4,W2:

W2 > 

φ2TensorProductOfRepresentationsρ1,T1,W2

 

Example 3.

Compute the representation of rho1 (the standard representation of sl2) on the 2nd exterior product of the 3rd symmetric product 2Sym3V1.

sl2 > 

ChangeFrameW2:

W2 > 

T3Tools:-GenerateFormsdz1,dz2,dz3,dz4,2

T3:=dz1dz2,dz1dz3,dz1dz4,dz2dz3,dz2dz4,dz3dz4

(2.4)

 

We will need a 6-dimensional representation space.

W2 > 

DGsetupp1,p2,p3,p4,p5,p6,W3:

W3 > 

φ3TensorProductOfRepresentationsφ2,T3,W3

 

Use the Invariants command to calculate the invariants of this representation.

sl2 > 

Invariantsφ3

3D_p3+D_p4

(2.5)

See Also

DifferentialGeometry, Tensor, Tools, LieAlgebras, Invariants, GenerateForms, GenerateSymmetricTensors, Query, Representation