MinimalSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[MinimalSubalgebra] - find the smallest Lie subalgebra containing a given set of vectors from a Lie algebra, find the smallest matrix algebra containing a given set of matrices

Calling Sequences

     MinimalSubalgebra(S)

     MinimalSubalgebra(M)

Parameters

     S        - a list of vectors in a Lie algebra

     M        - a list of square matrices

 

Description

Examples

Description

• 

MinimalSubalgebra(S) calculates the smallest Lie subalgebra J containing the list of vectors S from a defined Lie algebra 𝔤. A list of basis vectors for the subalgebra J returned.

• 

MinimalSubalgebra(M) calculates the smallest matrix algebra containing the matrices in the list M.

• 

The command MinimalSubalgebra is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form MinimalSubalgebra(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-MinimalSubalgebra(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First we initialize a Lie algebra and display the multiplication table.

L1_DGLieAlgebra,Alg1,5,1,5,1,2,2,3,1,1,2,5,2,1,2,5,3,1,3,5,3,1,4,5,4,2

L1:=e1,e5=2e1,e2,e3=e1,e2,e5=e2+e3,e3,e5=e3,e4,e5=2e4

(2.1)

DGsetupL1:

 

Find the minimal subalgebra containing e1, e3.

Alg1 > 

S1e1,e3:

Alg1 > 

A1MinimalSubalgebraS1

A1:=e1,e3

(2.2)

 

Find the minimal subalgebra containing e2, e3.

Alg1 > 

S2e2,e3:

Alg1 > 

A2MinimalSubalgebraS2

A2:=e1,e2,e3

(2.3)
Alg1 > 

QueryS2,Subalgebra

false

(2.4)
Alg1 > 

QueryA2,Subalgebra

true

(2.5)

 

Find the minimal subalgebra containing e2, e5.

Alg1 > 

S3e2,e5:

Alg1 > 

A3MinimalSubalgebraS3

A3:=e1,e2,e3,e5

(2.6)

 

Example 2.

The command MinimalSubalgebra also works with matrices.

Alg1 > 

MMatrix1,0,0,0,1,0,1,0,0,Matrix0,1,0,0,1,1,0,1,0

Alg1 > 

NMinimalSubalgebraM

 

We can use the LieAlgebraData command to verify that the set of matrices N defines a 4-dimensional Lie algebra and to determine the commutator relationships.

Alg1 > 

LieAlgebraDataN

e1,e2=e3,e1,e3=e3,e1,e4=e4,e2,e3=e4,e2,e4=e3+e4

(2.7)
Alg1 > 

 

Here e1,e2, e3, e4 denote the four matrices N[1], N[2], N[3], N[4].

See Also

DifferentialGeometry

LieAlgebras

LieAlgebraData

MinimalIdeal

Query[Subalgebra]