LieAlgebraWithCoefficientsData - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : LieAlgebraWithCoefficientsData

LieAlgebras[LieAlgebraWithCoefficientsData] - calculate the structure equations for a Lie algebra with coefficients in a representation

Calling Sequences

     LieAlgebraWithCoefficientsData(ρ, rho,algC)  

     LieAlgebraWithCoefficientsData(alg,V, M, algC)

     LieAlgebraWithCoefficientsData(algC)

Parameters

   ρ       - a representation of a Lie algebra

   algC    - name or a string, the name to be assigned to the Lie algebra with coefficients

   V       - name of the representation space used to define the Lie algebra with coefficients

   M       - a list of square matrices which form a Lie algebra

Description

• 

Let V be a linear space with basis x1, x2, ... , xm ; let 𝔤 be a Lie algebra with basis e1, e2, ... , en and dual basis θ1,θ2,..., θn; and let ρ:𝔤 glV be a representation of 𝔤. The representation ρ defines the multiplication eixa = ρeixa. Let Λp𝔤, V be the vector space of p-forms with coefficients in the representation space V. A form ω Λp𝔤, Vif for all vectors X1, X2, ..., Xp  𝔤 , ωX1, X2, ..., Xp V. For example, the general 1-form α and 2-form β with coefficients in V can be written as sums

α = ai Aai xa θi     and   β= aijBai j xa θi θj,

where the coefficients Aai and Bai jare constants. The spaces Λp𝔤, Vplay an important role in a number of constructions in Lie theory (See, for example, Cohomology, Deformation, MasseyProduct, KostantLaplacian). To work with forms defined on Lie algebras with coefficients in a representation, one first uses the commands LieAlgebraWithCoefficientsData and DGsetup -- in much the same way that one uses LieAlgebraData and AlgebraData to calculate the structure equations for a Lie algebra or a general non-commutative algebra.

• 

 The output of the LieAlgebraWithCoefficientsData is a data structure which can be passed to the command DGsetup.The structure equations are displayed.

 

See Also

DifferentialGeometry

LieAlgebras

AlgebraData

Adjoint

Cohomology

Deformation

DGsetup

LieAlgebraData

MasseyProduct

SimpleLieAlgebraData

Representation

StandardRepresentation

Examples

with(DifferentialGeometry): with(LieAlgebras):

 

Example 1.

We use the 6 dimensional Lie algebra so4 and its standard representation by 4 ×4 skew-symmetric matrices to illustrate the 3 calling sequences for LieAlgebraWithCoefficientsData. First, use the command SimpleLieAlgebraData to retrieve the structure equations for so4.

LD := SimpleLieAlgebraData("so(4)", so4);

LD:=e1,e2=e4,e1,e3=e5,e1,e4=e2,e1,e5=e3,e2,e3=e6,e2,e4=e1,e2,e6=e3,e3,e5=e1,e3,e6=e2,e4,e5=e6,e4,e6=e5,e5,e6=e4

(1)

DGsetup(LD);

Lie algebra: so4

(2)

 

Use the command StandardRepresentation to retrieve the matrices for the standard representation.

so4 > 

M := StandardRepresentation(so4);

 

Define a 4-dimensional representation space V and the representation ρ.

so4 > 

DGsetup([x1, x2,x3,x4], V);

frame name: V

(3)
V > 

rho := Representation(so4, V, M);

 

Use the first calling sequence to calculate the structure equations for so4with coefficients in the representation ρ.

so4 > 

LC1 := LieAlgebraWithCoefficientsData(rho, algC1);

LC1:=e1,e2=e4,e1,e3=e5,e1,e4=e2,e1,e5=e3,e2,e3=e6,e2,e4=e1,e2,e6=e3,e3,e5=e1,e3,e6=e2,e4,e5=e6,e4,e6=e5,e5,e6=e4,e1.x1=x2,e1.x2=x1,e2.x1=x3,e2.x3=x1,e3.x1=x4,e3.x4=x1,e4.x2=x3,e4.x3=x2,e5.x2=x4,e5.x4=x2,e6.x3=x4,e6.x4=x3

(4)

 

Initialize.

so4 > 

DGsetup(LC1);

Lie algebra with coefficients: algC1

(5)

 

Here is a sample calculation using a 2-form form on so4 with coefficients in V.

algC > 

alpha := evalDG(x3*theta1 &w theta2);

α:=x3θ1θ2

(6)
algC > 

ExteriorDerivative(alpha);

x2θ1θ2θ4+x4θ1θ2θ6+x3θ1θ3θ6x3θ2θ3θ5

(7)

 

The second calling sequence simply allows one to calculate the structure equations (4) directly from the matrices  without having to first define the representation ρ.

so4 > 

LieAlgebraWithCoefficientsData(so4, V, M, algC2);

e1,e2=e4,e1,e3=e5,e1,e4=e2,e1,e5=e3,e2,e3=e6,e2,e4=e1,e2,e6=e3,e3,e5=e1,e3,e6=e2,e4,e5=e6,e4,e6=e5,e5,e6=e4,e1.x1=x2,e1.x2=x1,e2.x1=x3,e2.x3=x1,e3.x1=x4,e3.x4=x1,e4.x2=x3,e4.x3=x2,e5.x2=x4,e5.x4=x2,e6.x3=x4,e6.x4=x3

(8)

 

The third calling sequence retrieves the structure equations of a previously defined Lie algebra with coefficients in a representation.

algC > 

LieAlgebraWithCoefficientsData(algC1);

e1,e2=e4,e1,e3=e5,e1,e4=e2,e1,e5=e3,e2,e3=e6,e2,e4=e1,e2,e6=e3,e3,e5=e1,e3,e6=e2,e4,e5=e6,e4,e6=e5,e5,e6=e4,e1.x1=x2,e1.x2=x1,e2.x1=x3,e2.x3=x1,e3.x1=x4,e3.x4=x1,e4.x2=x3,e4.x3=x2,e5.x2=x4,e5.x4=x2,e6.x3=x4,e6.x4=x3

(9)