TotalJacobian - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[TotalJacobian] - find the Jacobian of a transformation using total derivatives

Calling Sequences

     TotalJacobian(φ)

Parameters

     φ        - a transformation between two jet spaces

 

Description

Examples

Description

• 

Let EM and FN be two fiber bundles with associated jet spaces JkE M and JℓF N and with jet coordinates (xi, uα, uiα, uijα, ..., uij  kα) and (ya, vρ, viρ, vij ρ, ..., vij  ℓρ) respectively. Let φ:JkE JF be a transformation and let φa= φa(xi, uα, uiα, uijα, ..., uij  kα) be the ya components of φ . Then the total Jacobian of φ is the m ×n  matrix Diφa, where Di denotes the total derivative with respect to xi.

• 

TotalJacobian returns the m ×n  matrix Diφa.

• 

The command TotalJacobian is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form TotalJacobian(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-TotalJacobian(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

First initialize several different jet spaces over bundles E1M1, E2M2, E3M3. The dimension of the base spaces are dimM1 =2, dimM2 =1, dimM3 =3.

DGsetupx,y,u,E1,2:DGsetupt,v,E2,2:DGsetupp,q,r,w,E3,2:

 

Define a transformation φ1:J2E1  E2 and compute its total Jacobian (a 1 ×2 matrix).

E3 > 

φ1TransformationE1,E2,t=u1,1,v=xy

φ1t=u1,1,v=xy

(2.1)
E1 > 

J1TotalJacobianφ1

J1u1,1,1u1,1,2

(2.2)

 

Define a transformation φ2:J2E1  E3 and compute its total Jacobian (a 3×2 matrix).

E1 > 

φ2TransformationE1,E3,p=xu1,q=yu,r=u2,2,w=u1

φ2p=xu1,q=yu,r=u2,2,w=u1

(2.3)
E1 > 

J2TotalJacobianφ2

J2xu1,1+u1xu1,2yu1yu2+uu1,2,2u2,2,2

(2.4)

 

Define a transformation φ3:J1E1  E1 and compute its total Jacobian (a 2×2 matrix).

E1 > 

φ3TransformationE1,E1,x=xy,y=uu2,u=y

φ3x=xy,y=uu2,u=y

(2.5)
E1 > 

J3TotalJacobianφ3

J3yxuu1,2+u2u1uu2,2+u22

(2.6)

See Also

DifferentialGeometry

JetCalculus

PushforwardTotalVector

TotalDiff

Transformation