LQR - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ControlDesign

  

LQR

  

design linear quadratic state feedback regulator (LQR) for a given state-space system

 

Calling Sequence

Parameters

Options

Solvability Conditions

Description

Examples

Calling Sequence

LQR(sys, Q, R, opts)

Parameters

sys

-

System; system object

Q

-

Matrix; state weighting matrix

R

-

Matrix; input weighting matrix

opts

-

(optional) equation(s) of the form option = value; specify options for the LQR command

Options

• 

N = Matrix or Vector

  

Weighting on the state-input multiplication term in the cost function. If omitted, a zero matrix with appropriate dimensions will be considered.

• 

poles = true or false

  

True means the eigenvalues of A-BK are returned. The default value is false.    

• 

riccati = true or false

  

True means the solution of the associated Riccati equation is returned.

For a continuous system, the infinite horizon solution of the following continuous-time Riccati equation (CARE) is returned.

ATX+XAXB+NR1XB+NT+Q=0

The LQR feedback gain is calculated as

K=R1XB+NT

For a discrete system, the infinite horizon solution of the following discrete-time Riccati equation (DARE) is returned

ATXAXATXB+NBTXB+R1BTXA+NT+Q=0

The LQR feedback gain is calculated as

K=BTXB+R1BTXA+NT

The default value is false.

• 

return_Kr = true or false

  

True means the direct gain Kr is returned. The default value is false.

• 

parameters = {list, set}(name = complexcons)

  

Specifies numeric values for the parameters of sys. These values override any parameters previously specified for sys. The numeric value on the right-hand side of each equation is substituted for the name on the left-hand side in the sys equations. The default is the value of sys given by DynamicSystems:-SystemOptions(parameters).

Solvability Conditions

• 

The pair A,B must be stabilizable.

• 

The pair QNR1NT,ABR1NT must have no unobservable modes on the imaginary axis in continuous-time domain or on the unit circle in discrete-time domain.

• 

R>0 (positive definite) and QNR1NT0 (positive semidefinite).

Description

• 

The LQR command calculates the LQR state feedback gain for a system.

• 

The system sys is a continuous or discrete time linear system object created using the DynamicSystems package. The system object must be in state-space (SS) form. The state-space system can be either single-input/single-output (SISO) or multiple-input/multiple-output (MIMO).

• 

In continuous time, the optimal state feedback gain, K, is calculated such that the quadratic cost function

Ju=0xTQx+uTRu+2xTΝuⅆt

is minimized by the feedback law u = -Kx subject to the system dynamics

x·=Ax+Bu

• 

In discrete time, the optimal state feedback gain, K, is calculated such that the quadratic cost function

Ju=n=0xTQx+uTRu+2xTΝu

is minimized by the feedback law u[n] = -Kx[n] subject to the system dynamics

xn+1=Axn+Bun

• 

Q and R are expected to be symmetric. If the input Q and/or R are not symmetric, their symmetric part will be considered since their antisymmetric (skew-symmetric) part has no role in the quadratic cost function.

• 

In addition to the state feedback gain, depending on the corresponding option values, the command also returns the closed-loop eigenvalues and the solution of the associated Riccati equation.

• 

The direct gain Kr is computed as follows:

CD·K·1A+B·K·B+D (continuous time)

CD·K·1A+I+B·K·B+D (discrete time)

• 

If sys contains structured uncontrollable states, they are removed before computing the LQR state feedback. The resulting gain K is then filled with zeros at positions corresponding to the removed states; however, the other outputs are not filled and, consequently, they may have lower dimensions as expected.

Examples

withControlDesign:

withDynamicSystems:

csysNewSystemMatrix2s2+3s+1,1s+2,s1s2+5,7s+1s+4:

csys:-tf

2s2+3s+11s+2s1s2+57s2+5s+4

(1)

sysStateSpacecsys:

sys:-a;sys:-b;sys:-c;sys:-d

010000000100000001000−5−15−6−3000000001000000010000−8−14−7

00000010000001

10020451−1−2211470

0000

(2)

Q13LinearAlgebra:-IdentityMatrix7;R2LinearAlgebra:-IdentityMatrix2

Q13000000013000000013000000013000000013000000013000000013

R2002

(3)

KLQRsys,Q,R

K0.01663898109747050.2994436759550440.8677764521914780.3018509310763290.0.0.0.0.0.0.0.01040989379861050.01954395072894290.0146813589873455

(4)

KprLQRsys,Q,R,poles=true,riccati=true,return_Kr=true:Kpr1;Kpr2;Kpr3;Kpr4

0.01663898109747050.2994436759550440.8677764521914780.3018509310763290.0.0.0.0.0.0.0.01040989379861050.01954395072894290.0146813589873455

−2.62756665299744+0.I−0.145624709217511+2.22784297750641I−0.1456247092175112.22784297750641I−0.383034859643869+0.I−1.00185981437603+0.I−1.98515367555330+0.I−4.02766786905801+0.I

3.50357106780249636427356983347380869701730928710788.90631012705411115311675810756718031049477924614583.12838818122098082686058820294514592760627824361050.0332779621949409374206603236526689213529915396260090.0.0.8.906310127054111153116758107567180310494779246145827.01792983748675985061180093742507824269810008618110.9996867306090944849060693759024372654302363650350.598887351910087243343592782953780547783773573792700.0.0.3.128388181220980826860588202945145927606278243610510.9996867306090944849060693759024372654302363650358.75386079427495244526889789195148694929582021351381.73555290438295551200857175359974385723535498487790.0.0.0.0332779621949409374206603236526689213529915396260090.598887351910087243343592782953780547783773573792701.73555290438295551200857175359974385723535498487790.603701862152658441644654693320879940510941682759390.0.0.0.0.0.0.0.604587138927168509676898420793792313225217218130870.380945919753830599663964618798960532181765706634190.0208197875972210396136451371378709701895903592627870.0.0.0.0.380945919753830599663964618798960532181765706634190.664447437767019541498152361507087810149285907951570.0390879014578858512583266659427122986389872752131640.0.0.0.0.0208197875972210396136451371378709701895903592627870.0390879014578858512583266659427122986389872752131640.029362717974691029572229097828269653238134822396934

0.487728789828921−0.1393510828082630.05562784648471260.556278464847126

(5)

We can also use LQR with discrete models:

dsysToDiscretecsys,1,method=bilinear

dsysTransfer Functiondiscrete; sampletime = 12 output(s); 2 input(s)inputvariable=u1z,u2zoutputvariable=y1z,y2z

(6)

sysStateSpacedsys

sysState Spacediscrete; sampletime = 12 output(s); 2 input(s); 7 state(s)inputvariable=u1q,u2qoutputvariable=y1q,y2qstatevariable=x1q,x2q,x3q,x4q,x5q,x6q,x7q

(7)

KLQRsys,Q,R

K0.04812023135991430.301603484287272−0.4208348953450350.05115143016560900.0.0.0.0.0.0.0.0.0372408140701274−9.76066563662570×10−51

(8)

KprLQRsys,Q,R,poles=true,riccati=true,return_Kr=true:Kpr1;Kpr2;Kpr3;Kpr4

0.04812023135991430.301603484287272−0.4208348953450350.05115143016560900.0.0.0.0.0.0.0.0.0372408140701274−9.76066563662570×10−51

−0.0959924471365448+0.725780367567049I−0.09599244713654480.725780367567049I0.597646681582207+0.I−0.133580894274726+0.I0.+0.I−0.271790906819696+0.I0.271790906819696+0.I

0.342082466307950697771416932718558156273138383885160.054836997143688792408247958303061879045638516173491−0.0765154355180443195172182993354600571032994387984010.00930026003020372286930278584139618378658879868347600.0.0.0.0548369971436887924082479583030618790456385161734911.0190795442103837012531041373825245474117656429532−0.42467264975475382590709073532181913929136909457623−0.0161167278273309432267789914450936841209498377188470.0.0.−0.076515435518044319517218299335460057103299438798401−0.424672649754753825907090735321819139291369094576232.0214621985616492009289490977082087182086468171616−0.509659957051269219426006118369376537440933325477320.0.0.0.0093002600302037228693027858413961837865887986834760−0.016116727827330943226778991445093684120949837718847−0.509659957051269219426006118369376537440933325477322.24919438685146851376566202589753941507655526953060.0.0.0.0.0.0.0.33333333333333333333333333333333333333333333333333−3.8496822040751973138321389112729645857823238931349×10−50−6.1340857535650804575141297226367399037182210044452×10−510.0.0.0.−3.8496822040751973138321389112729645857823238931349×10−500.67494240312586739704767351946529754472265510527072−2.9362773606352192932407413788839969812745930630482×10−500.0.0.0.−6.1340857535650804575141297226367399037182210044452×10−51−2.9362773606352192932407413788839969812745930630482×10−501.0082757364592007303810068527986308780559884386041

0.474104074310421−0.1354583069456280.05788310645187300.578831064350061

(9)

See Also

ControlDesign

ControlDesign[LQRContinuous]

ControlDesign[LQRDiscrete]

ControlDesign[LQROutput]

ControlDesign[StateFeedback][Ackermann]

ControlDesign[StateFeedback][PolePlacement]